PRL 99, 220401 (2007)

PHYSICAL REVIEW LETTERS

week ending
30 NOVEMBER 2007

Quantum Reconstruction of an Intense Polarization Squeezed Optical State
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We perform a reconstruction of the polarization sector of the density matrix of an intense polarization
squeezed beam starting from a complete set of Stokes measurements. By using an appropriate quasidis-
tribution, we map this onto the Poincaré space, providing a full quantum mechanical characterization of

the measured polarization state.
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Efficient methods of quantum-state reconstruction are of
the greatest relevance for quantum optics. Indeed, they are
invaluable for verifying and retrieving information. Since
the first theoretical proposals [1] and the pioneering experi-
ments [2], this discipline has witnessed significant growth
[3]. Laboratory demonstrations of state tomography are
numerous and span a broad range of physical systems,
including molecules [4], ions [5], atoms [6], spins [7],
and entangled photon pairs [8].

Polarization properties of nonclassical light are becom-
ing more and more important for quantum information
applications, since they are simpler to manipulate and
can be treated independently of other degrees of freedom.
A good example is polarization squeezing, which is de-
tected much more easily than quadrature squeezing. How-
ever, to go beyond the standard characterization of polar-
ization squeezing by measuring variances of the Stokes
parameters [9], a complete tomography of the state is
required. When trying to do this, one is immediately faced
with theoretical difficulties: The description of the polar-
ization state in terms of the total density operator is super-
fluous because it contains not only polarization informa-
tion. This redundancy can be handled for a low number of
photons but becomes a significant hurdle for highly excited
states. An adequate solution has been found only recently:
It suffices to reconstruct a subset of the density matrix that
has been termed the polarization sector [10] (or the polar-
ization density operator [11]), since its knowledge allows
for a complete characterization of the polarization state
[12].

The purpose of this Letter is to report on the first
reconstruction of intense polarization squeezed states.
Indeed, our results confirm that, even at this bright limit,
they still preserve fingerprints of very strong nonclassical
behavior.

We begin by briefly recalling some background material.
We assume a two-mode field that is fully described by two
complex amplitudes, denoted by ay and ay, where the
subscripts H and V indicate horizontal and vertical polar-
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ization modes, respectively. The commutation relations of
these operators are standard: [a;, &}:] = 8, with j, k €
{H, V}. The analysis of the polarization structure is greatly
simplified if we use the Schwinger representation

4 I .+, ot A . R
Jy = E(alzav + a;f,aH), Jy == (apay — agay),
A L .+, it oa
J3 = E(QIICIH - a;r/(lv), (1)

together with the total photon number N = &;[,& t &;r,&v.

These operators coincide, up to a factor 1/2, with the
Stokes operators, whose average values are precisely the
classical Stokes parameters. One immediately finds that
J=0 s, J3) satisfy the commutation relations distinc-
tive of the su(2) algebra: [J, J,] = iJ; and cyclic permu-
tations. This noncommutability precludes the simultaneous
precise measurement of the physical quantities they
represent.

The Hilbert space JH for these fields has a convenient
orthonormal basis in the form of the Fock states for both
polarization modes, namely, |ny, ny). However, it is ad-
vantageous to use the basis |J, m) of common eigenstates
of J> and J;. Since J = N/2, this can be accomplished
just by relabeling the Fock basis as [J,m)=
lny = J + m,n, = J — m). Here, for fixed J (i.e., fixed
N), m runs from —J to J, and these states span a (2J +
1)-dimensional subspace wherein J acts in the standard
way. Since any polarization observable has a block-
diagonal form in this basis, it seems appropriate to define
the polarization density operator as

0= @ él = Z
J=0 J=0m,

For a reconstruction of the quantum state, one first has to
extract the required data from tomographical measure-
ments. The overall scheme of our experimental setup is
illustrated in Fig. 1. The field to be characterized is ana-
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lyzed by using a general polarization measurement appa-
ratus consisting of a half-wave plate (A/2, #) followed by a
quarter-wave plate (A/4, ¢) and a polarizing beam splitter
(PBS). The wave plates transform the input polarization by
allowing the measurement of different Stokes parameters
by the projection onto the basis |J, m).

The PBS outputs are measured directly by using detec-
tors with InGaAs photodiodes (custom-made by Laser
Components GmbH with 98% quantum efficiency at dc).
The rf currents of the photodetectors are mixed with an
electronic local oscillator at 17.5 MHz, low-pass filtered
(1.9 MHz) to avoid ac saturation due to the laser repetition
rate, amplified (FEMTO DHPVA-100), and digitized by an
analog-to-digital exit converter (Gage CompuScope 1610)
at 107 samples per second with a 16-bit resolution and
10 times oversampling. The measurement is limited by the
digitally low-pass-filtered resolution bandwidth of 1 MHz
at the 17.5 MHz sideband relative to the 200 THz carrier.
The signal is sampled around this sideband to avoid the
classical noise present in the frequency band around the
carrier [13]. Ten digitized samples correspond to the photo-
current at this sideband generated by photons impinging on
the photodiode for 1 ws. This photodetection can be mod-
eled by the positive operator-valued measure f[ﬁl =
|7, m){J, m|, so that w’, = Tr(dI1,) is the probability of
detecting ny = J + m photons in the horizontal mode and
simultaneously ny, = J — m photons in the vertical one
[14].

Polarization transformations performed by the wave
plates can be described in terms of J,, which generates
rotations about the direction of propagation, and J5, which
generates phase shifts between the modes. Their action is
represented by R(n) = ¢/®2¢i%)s where n = (cos¢ sin6),
sin¢ sin#, cosé) is a unit vector given by the angles (0, ¢).
The experimental histograms recorded for each n then
correspond to the tomographic probabilities

wi(n) = Ti[oTT1,(n)] = o(J, mlOlJ, mby,  (3)

where IAIL(n) = ﬁ(n)ﬂﬁjﬁ(n) and
R m)|J, m).
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FIG. 1 (color online). Setup for efficient polarization squeez-
ing generation and the corresponding Stokes measurement ap-
paratus.

The quantum states on which we performed the mea-
surements were polarization squeezed states created by the
Kerr nonlinearity experienced by ultrashort laser pulses in
optical fibers [15]. Our experiment employs a Cr**:YAG
laser emitting near Fourier-limited 140 fs FWHM pulses at
1497 nm with a repetition rate of 163 MHz. By using the
two polarization axes of a 13.2 m birefringent fiber (3M
FS-PM-7811, 5.6 um mode-field diameter), two quadra-
ture squeezed states are simultaneously and independently
generated. The emerging pulses intensities are set to be
identical, and they are aligned to temporally overlap. The
fiber polarization axes exhibit a strong birefringence (beat
length of 1.67 mm) that must be compensated. To mini-
mize postfiber losses, we precompensate the pulses in an
unbalanced Michelson-like interferometer that introduces
a tunable delay between the polarizations [16]. A small
part (0.1%) of the fiber output serves as the input to a
control loop to maintain a 7/2 relative phase between
the exiting pulses, producing a circularly polarized beam.

Since the Kerr effect is photon-number-preserving, the
amplitude fluctuations of the two individual modes H and
V are at the shot-noise level. This was checked by using a
coherent beam from the laser and employing balanced
detection. The average output power from the fiber was
13 mW, which, with the bandwidth definition of our quan-
tum state, corresponds to an average number of photons of
10" per 1 us. The Kerr effect in fused silica generates
squeezing up to some terahertz, making the choice of the
sideband, in principle, arbitrary. Rotation of the wave
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FIG. 2 (color online). Measured histograms of the difference
current of the two detectors for various measurement angles on
the Poincaré sphere. When the total number of photons is not
measured, the histograms are the sum over J of the tomograms
(3). Note the different scales on both plots. Histograms 1, 2, and
3 are in the dark plane, while histogram 5 is at the classical mean
value. The histograms corresponding to electronic and shot noise
are also shown.
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plates scanned one-quarter of the Poincaré sphere in
65 steps for ¢ and 64 steps for 6, a measurement which
took over five hours. The rest of the data can be deduced
from symmetry.

For each pair of angles, the photocurrent noise of
both detectors after the PBS was simultaneously sampled
2.9 X 10° times. Noise statistics of the difference of the
two photocurrents were acquired in histograms with
2048 bins and the optical intensities incident on both
detectors were recorded as well (as dc current values). In
Fig. 2, we show typical histograms at different angles on
the Poincaré sphere. As the widths of the histograms
largely vary from squeezing to antisqueezing ranges, there
are two plots with the amplitude scale differing by more
than 1 order of magnitude. The histograms labeled 1-3 are
measured in the dark plane, which is perpendicular to the
classical mean value of the state. Label 1 denotes the angle
of maximum squeezing, while label 3 corresponds to the
antisqueezing. Label 5 is the angle of the classical mean
value, where the measured noise data are almost shot-noise
limited. Because of the high number of samples, the mea-
sured histograms are smooth, and, at the same time, the
number of bins makes it possible to resolve the large
dynamical range of amplitudes, so no data interpolation
was needed. We also plot histograms showing the elec-
tronic noise and the shot noise. Higher-order moments of
the measured data were also computed, but we found no
significant deviation from what is expected from a

Gaussian distribution. ‘

The reconstruction in each (2J + 1)-dimensional invari-
ant subspace can be now carried out exactly since it is
essentially equivalent to a spin J [17]. After some calcu-
lations, one finds that

) 1 .
Qs =4 m;J [92 dn'w;, ) K;(m —n'-J), 4

where the integration extends over the unit sphere S, and
the kernel K ;(x) is

X, (x) = 27+ 1 ﬁzﬂ dwsin2<g>e*i‘”". 5)

4772

From the exact solution (4), one can calculate any
polarization quasidistribution [18]. From a computational
perspective, the SU(2) Q function turns out to be the
simplest, since in each invariant subspace it reduces to

Q(J? n) = <Jrn|é]|‘]y n>r (6)

where |J,n) = R(n)|J,m = —J) are SU(2) coherent
states obtained by displacing the “‘ground” state |J, —J)
over the sphere [19]. This definition is a straightforward
generalization of the standard one for the harmonic oscil-
lator. The Wigner function can also be evaluated, although
with additional effort. Nevertheless, we do not expect these
two quasidistributions to differ notably for the states we
study here. We need only thus to calculate the matrix
elements of the kernel & ;(m —n’- J). The most direct
way to proceed is to note that

~ + T . 2J
U,n|XK;(m—n'"-J)|J,n)= +l fz dwsin2<%>e’m‘”[cos<2> - isin<£> cosX:| , @)
0

4772

2 2

where cosy = n - n’. In the limit of J > 1, the integral in Eq. (7) reduces to d’>8(x)/dx? evaluated at x = m — Jn - n’.
Since m can be taken as a quasicontinuous variable, we integrate by parts to obtain

2] +1 (e d*w)
Q(,n) = J—zf dmf i/ ) s ), ®)
41 —o0 S, dm

Thus, in the limit of high photon numbers, the reconstruc-
tion turns out to be equivalent to an inverse Radon trans-
form [20] of the measured tomograms, which greatly
simplifies the numerical evaluation of Q(J, n).

In Fig. 3 (top), we show the result of the three-
dimensional inverse Radon transform for a polarization
squeezed state. Here an isocontour surface of Q(J, n) in
the Poincaré space (that results from representing the
average values of J in a three-dimensional Euclidean space
having J;, J,, and J; as orthogonal axes) is seen. The
ellipsoidal shape of the state is clearly visible. The anti-
squeezed direction of the ellipsoid is dominated by excess
noise stemming largely from photon-phonon interactions,
which is characteristic of squeezed states generated in
optical fibers.

In Fig. 3 (bottom), we compare the projections on the
coordinate planes of the isocontour surfaces of a coherent
and a polarization squeezed state for the value correspond-

\
ing to the half maximum. The contours agree with the

6.2 = 0.3 dB squeezing that was directly measured with
a spectrum analyzer. The elliptical contour in the J;-J3

FIG. 3 (color online). Sections of the isocontour surface plots
of the Q function for a coherent state (blue) and a polarization
squeezed state (red).
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FIG. 4 (color online). Probability distribution Q(n) over the
Poincaré unit sphere for a polarization squeezed state obtained
over all invariant subspaces. The distribution is strongly con-
centrated at the classical mean value, so we show a zoomed
version.

plane is slightly rotated, which is related to the squeezing
angle [15]. The projections on the planes J;-J, and J,-J3
show an additional spreading of the squeezed state in the J,
direction caused by the imperfect polarization contrast in
the measurement setup that mixes some of the antisqueez-
ing in the J, direction. As the classical excitation of the
state is in the J, direction, one expects to reach the shot-
noise limit in this projection.

By summing over all of the values of J, we obtain the
total Q(n), which is a probability distribution over the
Poincaré unit sphere and is properly normalized. In
Fig. 4, we have plotted such a function for the squeezed
state. As the state has a large excitation and the angles of
the distribution on the unit sphere are small, the spherical
coordinates can be treated as Cartesian in the vicinity of the
classical point, and we present a zoomed version of the
surface of the sphere. Again the excess phase noise is
visible. We have checked that the sampling errors affect
only the background noise by less than *1% compared to
the maximum value of the distribution. The observed
negative values of the Q function near the main peak (about
9% of the maximum) are unphysical: They arise from the
inverse Radon transformation and have a twofold origin.
First, the extremely elongated structure creates oscillations
in the reconstructed distribution, which has been confirmed
by numerical simulations. The second source is the laser,
which had occasional power spikes of 5% and an overall
power drift of 8% over the measurement time. This power
drift led to a corresponding drift of the state, and, as a
result, various tomograms relate to slightly different states.

We stress that our setup gives only information about the
polarization sector. While there are other proposals to
reconstruct the whole density matrix of a two-mode field
[21], those schemes employ homodyne detection in both
modes, which is unattainable in our case due to the high
intensities of our states.

In summary, we have presented a full quantum recon-
struction of an intense polarization squeezed state created
by the Kerr effect in an optical fiber. Interesting future

investigations include a comparison with maximum like-
lihood methods and a reconstruction of nonclassical polar-
ization states with lower intensity.
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