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Multifrequency forcing of systems undergoing a Hopf bifurcation to spatially homogeneous oscillations
is investigated. For weak forcing composed of frequencies near the 1:1, 1:2, and 1:3 resonances, such
systems can be described systematically by a suitably extended complex Ginzburg-Landau equation.
Weakly nonlinear analysis shows that, generically, the forcing function can be tuned such that resonant
triad interactions with weakly damped modes stabilize subharmonic 4- and 5-mode quasipatterns. In
simulations starting from random initial conditions, domains of these quasipatterns compete and yield
complex, slowly ordering patterns.
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In recent years, complex but ordered spatiotemporal
patterns characterized by multiple length scales have found
considerable interest. In particular, on the surface of verti-
cally vibrated fluid layers (Faraday system) various kinds
of fascinating periodic superlattice patterns and quasi-
patterns have been found experimentally [1,2]. Subse-
quently, such patterns have also been observed in optical
systems [3], in vertically vibrated fluid convection [4],
and on the surface of ferrofluids driven by time-periodic
magnetic fields [5]. Here we show that superlattices and
quasipatterns should be accessible quite generally in a
different class of systems: resonantly forced systems
undergoing a Hopf bifurcation to spatially homogeneous
oscillations. Paradigmatic for such systems are chemical
oscillations [6]. In chemical systems, patterns with mul-
tiple length scales have so far been obtained only by
imposing an external length through spatially periodic
illumination [7].

The stability of multimode patterns depends on the
interaction between their constitutive Fourier modes. For
small angles � between the modes, the cross-coupling
coefficient b��� is twice as large as the self-coupling
coefficient b0. Nearly parallel modes therefore suppress
each other, and, unless the cross-coupling coefficient de-
creases substantially with increasing �, only stripelike
patterns are stable. Strong angle dependence can arise if
the basic modes couple to weakly damped, resonating
modes [8,9]. Complex patterns with different symmetries
can then become stable [10].

The resonances stabilizing complex patterns have been
studied in great detail in the Faraday system. Their spatio-
temporal nature [11] allows a very controlled tuning
through the frequency content of the driving [12].
Broadly speaking, there are two mechanisms by which
complex patterns can be stabilized: either by enhancing
damping via the self-coupling b0 [9,13,14] or by reducing
the cross-coupling coefficient b��� [12,14].

In this Letter, we exploit spatiotemporal resonances to
induce complex spatial patterns in two-dimensional sys-
tems undergoing a Hopf bifurcation to spatially homoge-

neous oscillations. To this end, we apply spatially
homogeneous, resonant multifrequency forcing. By in-
cluding a frequency component close to twice the Hopf
frequency !h (1:2 resonance), we excite standing waves
with a wave number determined by the detuning between
the forcing and the Hopf frequency [15]. A second fre-
quency near 3 times the Hopf frequency (1:3 resonance)
induces a quadratic interaction term, which otherwise is
not allowed in the normal form for Hopf bifurcations. To
avoid transcritical bifurcations off the basic state to hex-
agonal patterns [16], we further include a second forcing
frequency close to the 1:2 resonance with a slightly differ-
ent detuning. Within the weakly nonlinear regime, we
show that, quite independent of the two parameters char-
acterizing the unforced Hopf bifurcation, the forcing func-
tion can be tuned such that instead of the usual stripe,
spiral, and labyrinthine patterns [17] one obtains super-
lattices and quasipatterns.

The systematic, weakly nonlinear description of a
weakly forced supercritical Hopf bifurcation is given by
the complex Ginzburg-Landau equation for the complex
oscillation amplitude A, which is extended to include the
near-resonant components of the forcing function [18]:

 

@A
@t
� �1� i��r2A� ��� i�� �1� i��jAj2�A

� ��cos�� sin�ei�t�A� � 	ei�A�2: (1)

Here � measures the relative contributions from the two
forcing components that are close to the 1:2 resonance,
which differ in their frequencies by �. The detuning be-
tween the Hopf frequency and half the frequency corre-
sponding to the forcing � cos� is given by �. The strength
and phase of the 1:3 forcing are given by 	 and �,
respectively. Nonlinear interactions of the 1:2-resonant
forcing and the 1:3-resonant forcing introduce an addi-
tional forcing near the Hopf frequency itself. For simplic-
ity, we assume a further explicit forcing component near
the 1:1 resonance that cancels the resulting additional,
inhomogeneous term in (1). It is straightforward to derive
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(1) from Oregonator-type models for the photosensitive
Belousov-Zhabotinsky reaction [19].

The slight detuning between the two 1:2-forcing com-
ponents introduces the explicit, periodic time dependence
of the coefficients in (1). By using Floquet theory, we
determine the instability of the basic state A � 0 with
respect to time-periodic solutions that are phase-locked
to the forcing [19]. Because of the dispersion �, the
detuning � induces phase-locked modes with a nonzero
wave number [15]. Depending on the forcing parameter �
and the detuning �, the mode that destabilizes the basic
state first is either harmonic or subharmonic relative to the
period 2
=�.

A typical set of neutral curves ��H;SH��k� for the har-
monic and subharmonic modes is shown in Fig. 1. We
focus here on the subharmonic case. The competition
between subharmonic modes of different orientation
[11,13] is modified by weakly damped harmonic modes
excited at quadratic order. Their effect is strongest if the
forcing � is only slightly below the critical forcing strength
��H�c of the harmonic modes (inset in Fig. 1). For this
reason, we tune the forcing parameter � and the detuning
� so that ��H�c is only slightly above the critical forcing
strength ��SH�

c of the subharmonic modes. In this Letter, we
focus on the enhancement of the self-coupling b0 of the
subharmonic modes and choose the forcing function such
that the critical wave number k�H�c of the harmonic mode is
close to twice that of the subharmonic mode K 	
k�H�c =k�SH�

c ’ 2. To reduce the competition between modes
subtending a specific angle �, a wave-number ratio K < 2
would be chosen [19].

To compute the interaction between modes of different
orientation within weakly nonlinear analysis, we expand
the oscillation amplitude as (�
 1)

 A � ��A1eik1�r � A2eik2�r�F�t� � h:o:t: (2)

For subharmonic patterns, F�t� has periodicity 4
=�.
Because of the time shift symmetry t! t� 2
=�, the
amplitude equations for A1;2 must be equivariant under
the transformation A1;2 ! �A1;2:

 

dA1

dt
� �A1 � b0A1jA1j

2 � b���A1jA2j
2; (3)

with a similar equation for A2. This symmetry eliminates
all quadratic terms and the associated transcritical
bifurcation.

Relevant for the pattern selection is the ratio b���=b0. It
is strongly affected by spatiotemporally resonant triads,
which are induced by the 1:3 forcing 	ei�. The resulting
	 dependence of b���=b0 is shown in Fig. 2. The stability
conditions for rectangular patterns (corresponding to a
rhombic arrangement of the wave vectors) are b0 > 0 and
jb���=b0j< 1. Thus, with increasing 1:3 forcing 	, a large
range of angles arises for which rectangular patterns are
stable, whereas without that forcing only stripe patterns
would be obtained. This is in contrast to the case of
Faraday waves, where even single-frequency forcing often
yields square patterns [2].

Given b���, the linear stability of various types of peri-
odic superlattice patterns comprised of three or more
modes on a fixed periodic Fourier lattice can be determined
systematically [20]. For simplicity, we consider only pat-
terns with Fourier modes that are equally spaced on the
critical circle. They may not form a periodic Fourier lat-
tice. This approach ignores possible higher-order reso-
nances [21] and sideband instabilities [22] and does not
account for possible convergence problems due to small
divisors [23]. In Fig. 3, we show the relative stability of
planforms contained in the subspaces spanned by 4, 5, and
6 equally spaced modes, respectively.

To address the competition between different, simulta-
neously stable planforms, we exploit the variational char-
acter of (3): @Aj=@T � �@FN=@A�j for j � 1; . . . ; N.
Figure 3 shows the energies FN of patterns comprised of
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FIG. 1 (color online). Neutral curves for subharmonic (thick
lines) and harmonic modes (thin lines) for � � �1, � � 4, � �
3, � � 0:476 718, and � � 4:2.
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FIG. 2 (color online). Angle dependence of the effective cross
coupling b���=b0 for � � �1 and � � 3


4 . Other parameters as
in Fig. 1.
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N modes that are equally spaced on the critical circle as a
function of the 1:3-forcing strength 	. When starting from
random initial conditions, planforms with lower energy are
expected to invade those with higher energy. Thus, for 	 &

0:82, the final state is expected to consist of stripes,
whereas for 	 * 1:07 patterns with four or more modes
should dominate.

To test the predictions of our weakly nonlinear analysis,
we perform direct simulations of the complex Ginzburg-
Landau equation (1). For a small system size, they confirm
the linear stability of patterns comprised of four modes. To
investigate the dependence of the pattern selection on the
1:3-forcing strength 	, we perform simulations in a large
square system of linear size L � 2
=k�SH�

c � 473:39 for
increasing forcing strengths 	, starting from identical ran-
dom initial conditions. We choose the system size such that
the modes making up hexagons and supersquares have
equal linear growth rates to bring out clearly how an
increase in 	 alone tips the balance from hexagons to
fourfold patterns. For 	 � 0:9, a pattern with a hexagonal
planform rather than a stripe structure arises. Because of
the reflection symmetry Aj ! �Aj of (3), domains with up
and down hexagons coexist separated by walls containing
narrow layers of triangle patterns [19].

Increasing 	 decreases the � range over which modes
suppress each other (cf. Figure 2) and more modes persist,
as shown in Fig. 4 for 	 � 1:2. The pattern exhibits ele-
ments reminiscent of ‘‘supersquares’’ and ‘‘antisquares’’
[20] (marked by dashed-dotted and dashed circles, respec-
tively). Increasing the 1:3 forcing to 	 � 2 increases the
number of persisting modes further and introduces numer-
ous elements with fivefold and with tenfold rotational
symmetry (dashed and solid circles, respectively) in Fig. 5.

The patterns shown in Figs. 4 and 5 are still evolving,
albeit very slowly. Nevertheless, it is clear that for 	 
 1:1
they will not evolve to simple hexagon states. While in our
simulations for all values of 	 domains of hexagons ap-

peared for early times, they were replaced for 	 
 1:1 by
domains of patterns comprised of four or more modes,
which have lower energy. A condensed view of the tem-
poral evolution of the patterns for different values of the
forcing 	 is given in Fig. 6. It depicts the evolution of the
relevant number of Fourier modes eS, estimated by the
spectral pattern entropy S 	 �

P
ijpij lnpij. Here pij de-

notes the normalized power spectrum. Clearly, the number
of significant modes increases with 	, albeit not monotoni-
cally at all times.

In conclusion, we have shown that, in systems under-
going a Hopf bifurcation to spatially homogeneous oscil-
lations, multifrequency forcing can substantially reduce
the competition between modes of different orientation
leading to complex multimode patterns. By an appropriate
choice of the amplitudes and phases of the forcing func-
tion, which constitute external control parameters, this
regime should be accessible generically, essentially inde-
pendent of the specifics of the unforced system. Our results
should therefore apply to realistic chemical oscillators
[6,17,24]. From a practical point of view, it should be
mentioned, however, that the complex patterns possibly
arise only very close to onset. This may require systems

FIG. 4 (color online). Partial view (size 0:5L� 0:35L) of 4-
mode pattern for 	 � 1:2. Parameters as in Fig. 2.

FIG. 5 (color online). Partial view (size 0:5L� 0:35L) of 5-
mode pattern for 	 � 2. Parameters as in Fig. 2.
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FIG. 3 (color online). Energy of planforms comprised of N
Fourier modes. Parameters as in Fig. 2. Solid (open) symbols:
Linearly stable (unstable) planforms.
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with relatively large aspect ratios and a very precise tuning
of the forcing parameters.

By using direct simulations of the complex Ginzburg-
Landau equation, we confirmed that these complex pat-
terns arise from general random initial conditions. The
appropriate, quantitative characterization of the transients,
in which multimode structures such as supersquares and
antisquares compete with each other, is still an open prob-
lem (cf. [25]). Another interesting question is the long-time
scaling of the ordering of such complex structures.

Compared to the Faraday system, the forced Hopf bi-
furcation considered here allows an additional level of
complexity by going slightly above the Hopf bifurcation.
There, complex patterns may compete with spatially ho-
mogeneous oscillations. For single-frequency forcing, lab-
yrinthine stripe patterns arise from the oscillations through
front instabilities and stripe nucleation [24]. It is not known
what happens to this scenario when the stripes are unstable
to the more complex patterns discussed here.
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FIG. 6 (color online). Temporal evolution of the relevant num-
ber of Fourier modes eS for various values of the 1:3-forcing
strength 	. Parameters as in Fig. 2.
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