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Based on an estimate of the knot entropy of a wormlike chain we predict that the interplay of bending
energy and confinement entropy will result in a compact metastable configuration of the knot that will
diffuse, without spreading, along the contour of the semiflexible polymer until it reaches one of the chain
ends. Our estimate of the size of the knot as a function of its topological invariant (ideal aspect ratio)
agrees with recent experimental results of knotted dsDNA. Further experimental tests of our ideas are
proposed.
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While everyday experience suggests that knots are very
common in long linear strings of any kind, and they get
quite tight whenever a string is not carefully handled, the
study of knots in polymers concentrated almost exclusively
on closed loops. It is understandable in the sense that knots
are not mathematically well defined for open strings.
However, if the string is long enough, while the knot
occupies a short fragment of it far from the ends, then
distinguishing between different knots, or between knots
and no knots, becomes sufficiently unambiguous.

The recent achievement in the theory of knotted loops
[1–5] is the idea of knot localization. As simulations show
[1,4], when a polymer loop with a knot is placed in a good
or � solvent, it typically adopts a conformation in which
most of the polymer forms a long unknotted loop, while the
knot gets somewhat tightened in a small part of the contour.
Recently, this type of knot localization was also observed
experimentally [5]. A theoretical explanation of the knot
localization phenomenon is given [3] for the so-called flat
knots, confined in a thin slit between two planes. In this
case, one can consider a two-dimensional network which
corresponds to any configuration of the knot by identifying
chain crossings as the cross-links. This mapping allows one
to resort to the sophisticated theory of 2D networks with
excluded volume [6,7] and conclude that the most entropi-
cally favorable network is obtained when one of the knot
arcs is made long at the expense of all others, thus local-
izing the knot. Tightening of knots is also helped by the
long range repulsion between monomers [8].

In the present Letter, we argue that at least for a worm-
like polymer, there exists a local (metastable) minimum of
free energy corresponding to a tight state of the knot even
when the chain itself is open (not a loop). That means that
if we intentionally tie a sufficiently tight knot somewhere
on a very long polymer chain, the knot will spontaneously
shrink or expand to a well-defined size and then, on much
longer time scales, it will diffuse along the polymer (by
polymer self-reptating through the knot) until, finally, the
knot is released through the chain end. We expect that this
knot will diffuse along the polymer as a soliton, in the

sense that its size remains relatively stable as it diffuses
over large distances. The size of such a solitary knot
depends on the complexity of the knot and on the persis-
tence length of the polymer; we estimate that the knot will
tighten to a size smaller than the persistence length of the
polymer.

To put forward our argument, we employ knot entropy
estimates based on the idea [9], similar to that in reptation
theory [10], that noncrossing constraints imposed on the
chain in the knot can be self-consistently described by
confining the chain in an effective tube. Physically, the
most natural construction of such a tube corresponds to
making maximally inflated or, equivalently, the shortest
length tube consistent with the given knot topology. This
approach to estimate knot entropy was invented by us [9].
It was also used in a number of other contexts and widely
popularized under the name ‘‘ideal knots’’ [11]. The con-
figuration and aspect ratio, p, of the ‘‘ideal’’ tube represent
topological invariants of the knot. This is sketched in the
Fig. 1. The values of p were carefully computed for many
knots, for instance, p � 10 for open trefoil and p � 25 for
open knot 71 [11,12]. We will assume p� 1, which means
our theory literally applies to the very complex knots.

Within the framework of this approach, we imagine that
a tight knot, characterized by ideal aspect ratio p, has been
tied in a very long polymer, and that currently the degree of
tightening of the knot is such that the diameter of its
confining tube is D. The length of the tube is pD and the
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FIG. 1 (color online). A knot is tied on a polymer chain. Knot
size in space is R; the chain within the knot is confined to a self-
consistent tube of diameter D. Length of this tube is pD, where
p is the topological invariant of the knot.
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size of the knot in space is R, such that pD�D2 � R3 or

 R� p1=3D: (1)

Throughout this Letter, we drop all numerical coefficients,
emphasizing only the scaling aspects of our considerations.
We want to estimate the free energy of the knot as a
function of D or R.

Although the original estimates of knot entropy were
designed for a Gaussian chain [9], they can be readily
adapted to a wormlike polymer. Consider a knot with D<
‘, where ‘ is the persistence length of the polymer. In this
case, the polymer is quite tightly confined in the tube and
can only wiggle about its center line. Therefore, the length
of polymer within the knot is close to pD, and its free
energy consists of bending energy and confinement en-
tropy. We estimate the bending energy as TpD‘=R2, with
temperature expressed T in energy units (kB � 1) and
assuming that the radius of curvature of the tube is about
the knot size R, which is natural for an ideal knot. We
further assume that the confinement entropy is the same as
that for a straight tube for which case it was computed by
Odijk [13] and turns out to be about unity per every so-
called deflection length �� �D2‘�1=3; this results in the
free energy contribution about TpD=�� Tp�D=‘�1=3.
Using (1), we obtain

 

�F
T
� p1=3 ‘

D
	 p

�
D
‘

�
1=3
; (2)

where �F is the free energy penalty for forming the knot
(taking the reference free energy to be that of the unknotted
chain). Obviously, it has a minimum at

 D
 � ‘p�1=2; or R
 � ‘p�1=6; (3)

i.e., the knot size decreases with increasing complexity.
Notice that the resulting optimal D
 meets the condition
D
 < ‘, so our estimate is self-consistent in this respect.

Of course, our result applies only as long as D
 > d,
where d is the thickness of the polymer itself. Furthermore,
in the case of a charged polymer such as DNA, we should
also require that tube diameter exceeds Debye screening
length, D
 > rs. In general, we can write roughly p <
�‘=�d	 rs��

2. More complex knots get so tight that their
further collapse is stopped by either the excluded volume
or electrostatic repulsion. As an example, for dsDNA, the
ratio ‘=�d	 rs� � 20 under physiological conditions [14],
while all knots with 7 or fewer crossings on the projection
have p about 30 or less [12]. Therefore, in practice the
condition on knot complexity p < �‘=�d	 rs��2 is not very
restrictive.

Let us now try to understand the physical meaning of our
result (3), because at the first glance it might seem counter-
intuitive. Indeed, the optimal D
 results from the competi-
tion of two factors, each of which, as it seems, disfavors
tightening. One, chain bending energy, obviously favors
more loose states of the knot, or increasing D. The other
one, however, related to the confinement entropy, favors

tube widening if the chain length in the tube is fixed. In our
case, when a knot tightens, it reduces the length of the
chain, pD, confined in the knot. In other words, the part of
the chain that remains in the tube suffers more when D
decreases, but the other part of the chain gets completely
free of restriction, and that factor wins the whole game.
That means: what really tightens the knot is the entropy
gain of the chain tails outside of the knot. Alternatively, we
can say that the knot gets compressed by the pressure of
Rouse modes (or bending phonons) of the outside chain
tails. A similar force can be observed during the trans-
location of a long polymer through a narrow channel across
a membrane; while two long polymer ends are outside the
membrane, their entropic favorability results in a force
stretching the polymer portion inside the channel, and,
accordingly, compressing the membrane. Notice that while
in such planar geometry this force increases logarithmi-
cally with the length of the polymer tails, in our case of two
long polymer ends sticking out of a compact knot, the force
on the knot is independent of the length of these ends,
provided that these tails are bigger than the knot—the
condition which is easily met for the tight knot and is
practically never met for the membrane.

How tight should the knot be in the first place in order
for our mechanism to take over and to bring the knot to its
metastable size R
? In other words, how wide is the basin
of attraction of our metastable free energy minimum? We
argue that the knot should be initially tightened to the state
in which tube diameter is smaller or about chain persis-
tence length ‘. Indeed, when knot tube is wider,D> ‘, the
chain inside the tube is roughly Gaussian, with blobs of
size D. Each blob contains about D2=‘ of polymer contour
length, and the entire tube contains polymer length pD2=‘.
At the same time, confinement entropy is about unity per
blob, which results in overall confinement entropy of about
p, independent of D. Thus, our entropic knot tightening
effect does not work if the tube is wider than persistence
length, and it comes into play only when the knot is
prepared in a compact enough state such that D< ‘. To
achieve this, the knot should be initially prepared by the
pulling of the ends with force f > f
, where f
 � T=‘.

Let us discuss now the dynamics aspect of the situation.
Imagine once again that a sufficiently tight knot was
initially tied in the polymer, similar to how it was done
in the experimental work [15] with DNA. Suppose now
that the chain is released and is free to move. We predict
then that the knot tightens spontaneously within a time
which is roughly independent of the total chain length L.
After that, the knot will diffuse along the chain in pretty
much the same way as it was observed experimentally [15]
and numerically [16] for the stretched chain (even though
in the experiment of Ref. [15] the chain ends were held at
fixed separation throughout the diffusion process). As re-
gards the knot diffusion coefficient along the chain, it was
shown in the work [15] that it can be quite accurately
expressed in terms of the friction coefficient, � , of a
polymer with length pD and diameter d, moving in the
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solvent of bulk viscosity � inside a tube of diameter D:
� � 2��

ln�D=d�pD. The diffusion coefficient is then deter-
mined by Einstein’s relation as T=� , and the diffusion
time of knot to the chain end is about L2�=T.

The above description of a solitonlike knot diffusing as a
whole along the chain holds as long as diffusion time is
shorter than the time of thermally activated loosening of
the knot. Indeed, we argued that the knot gets to its
metastable size R
 only when it is compact enough to
begin with, such that D< ‘ and, therefore, a free energy
barrier exists at D � ‘ (knots with D> ‘ will loosen up
spontaneously). Using Eq. (2), we can estimate the barrier
height as �FjD=‘�1 � �FjD�D
 � T�p� p5=6�. As ex-
pected, this barrier is very high for complex knots but,
even for p � 30, one gets a barrier of about 10T. For
smaller values of p, the barrier may be too small to
stabilize the tight knot and without the applied stretching
it will spread due to thermal fluctuations.

As a corollary to our result, let us mention the following
rather unexpected prediction. Let us take the polymer with
the knot tightened according to our mechanism, and now
let us gently pull the chain ends by a weak force. The
applied stretching will suppress transverse fluctuations of
the chain outside the knot. These fluctuations are the
reason why the knot was tightened in the first place and,
when they are suppressed by the applied force, the knot
swells—instead of further tightening which one could
have naively expected. Of course, at larger forces the
loosening of the knot stops and normal tightening takes
over. We should emphasize that the total distance between
chain ends increases monotonically with the pulling force,
as it must for stability; however, the knots still get larger at
the expense of some extra elongation of the linear chains
flanking the knot.

Let us support this physical argument by a little calcu-
lation. If the chain of contour length L is stretched by a
weak force f, it represents the succession of Pincus blobs,
each involving g persistence lengths such that f‘g1=2 � T;
the stretching free energy is about T per blob, or TL=g‘�
L‘f2=T (see, e.g., [17] ). In our case, only the chain outside
of the knot is subject to this stretching effect, which yields
the overall free energy

 

�F
T
� p1=3 ‘

D
	 p

�
D
‘

�
1=3
	
L� pD

‘

�
‘f
T

�
2
; (4)

subject to optimization with respect to D [see Eq. (6)
below]; here, the term / L is large, but can be dropped
as independent of D. Equation (4) remains valid as long as
Pincus blob is larger than persistence length f‘=T < 1.

If we stretch the outside chain even further, it crosses
over to the so-called Marko-Siggia regime [18] in which

 

�F
T
� p1=3 ‘

D
	 p

�
D
‘

�
1=3
	
L� pD

‘

�
‘f
T

�
1=2

; (5)

once again, this has to be optimized with respect to D.
Notice that in both Eqs. (4) and (5) we have neglected the

effect of force on the chain part inside of the knot. This is
justified as long as the amount of transverse fluctuations of
the outside chain, Dout�f�, which is either the blob size in
Pincus regime or the tube diameter in Odijk (or Marco-
Siggia) regime, remains larger than the optimized tube
diameter inside the knot, D
. At still larger forces, the
chain inside the knot is just as stretched as outside.
Summarizing all results of optimization:

 R
 �

8>>>><
>>>>:

‘p�1=6 	 ‘p�1=2
�
f‘
T

�
2

for f‘
T < 1

‘p�1=6 	 ‘p�1=2
�
f‘
T

�
1=2

for 1< f‘
T < p1=3

‘p1=3
�
f‘
T

�
�3=4

for p1=3 < f‘
T

: (6)

Thus, in accordance with our qualitative argument, the
application of weak force loosens the tight knot instead
of tightening it further. In practice, for the case of dsDNA,
since ‘ � 50 nm and T � 4 pN� nm, and taking p � 30,
we get that both crossovers f‘=T � 1 and f‘=T � p1=3 are
within an experimentally feasible force range (about a few
tenth and about a few piconewtons, respectively). To ob-
serve this effect, sufficiently long DNA should be taken,
because the linear DNA outside the knot should be able to
stretch more and to release sufficient length to accommo-
date the knot loosening. Simultaneously, the tails of linear
polymer flanking the knot must also each be significantly
bigger than the knot in terms of their respective gyration
radii in order for the knot compression to become inde-
pendent of their lengths (under this condition, the entropy
increase of a polymer segment that leaves the knot and
becomes a part of a free tail does not depend on the length
of the tail).

Turning to experimental tests of our theory, we first
consider the experiment by Quake et al. [15] in which
the knots were tied on DNA by the use of optical tweezers
and then the knot motion along DNA was observed. Our
theory indicates that the optimal tube diameter in the knot,
D
, does depend in a certain way on the knot complexity,
p. In the experiment, authors were unable to observe
directly the knot and measure its size R; instead, they
detected the amount of fluorescence coming from the
knot region, in excess of the fluorescence from linear
DNA. This means, in our notation, that the authors mea-
sured quantity pD
 � R
, because pD
 is the length of
DNA within the knot (proportional to the amount of fluo-
rescence), while R is the length of DNA that would have
been in that place if there were no knot. Given the normal-
ization condition (1), one could write pD
 � R
 � �p�
p1=3�D
. Authors of the work [15], assuming a priori that
D is independent of p, plotted pD
 � R
 against p� p1=3,
fitted the data to the linear function, and interpreted its
slope as the tube diameter D
. By contrast, our theory
predicts that D
 does depend on knot complexity p, such
that pD
 � R
 � �p1=2 � p�1=6�‘. This is illustrated in
Fig. 2, where both the linear fit and our theory results are
plotted along with the data points reproduced from the
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work [15]. At present, it is impossible to decide which
theory is a better fit to the data.

To further test our predictions, one should prepare the
knot and then consider what happens to it if the force is
subsequently switched off or significantly reduced.
Another test of our theory would be to see how the knot
diffusion time, determined by the friction coefficient � ,
depends on the knot type through D. In all cases, since
dsDNA is the most natural candidate for these experiments,
one should take care to distinguish the entropic mechanism
of knot localization discussed here and knot tightening due
to Coulomb forces, even screened ones, described in [8].
One way to discriminate the two effects is to look at the salt
dependence: our effect should only become more obvious
at very strong screening, while the effect of the work [8] is
based on the assumption that polymer stiffness is domi-
nated by the electrostatics. Yet another possibility is to use
granular chain experiments [19]. In the movie available in
Ref. [20] the knot does not increase in size while moving,
although we should put in question the applicability of our
arguments based on wormlike model to the granular chain.

To conclude, we have shown that an initially tightened
sufficiently complex knot in a wormlike polymer will
maintain a well-defined compact size which is smaller
than the persistence length. This is fundamentally different
from other cases of knot localization in closed loops, where
knot size is some power (smaller then unity, but positive) of
the total loop length. This configuration is metastable and
the knot will diffuse along the chain as a soliton, whether
the ends of the chain are subjected to external force or are
free to move. The effect is expected in semiflexible poly-
mers such as double stranded DNA for which separation of
length scales exists, L� ‘� d, and elastic behavior on
length scales smaller than ‘ was demonstrated in single
molecule experiments [21,22].
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Note added.—When we submitted this work for publi-
cation, we simultaneously sent a copy of our manuscript to
A. Vologodskii. With our consent, he performed Brownian
dynamics test and his preliminary data do not support our
conclusions. We think that it was because his model chain
consisted of rigid segments, while our theory relies on the
wormlike flexibility of the chain. Numerically, that means
one has to take really very short sticks connected by very
rigid joints—as short and as rigid as to at least observe the
developed Odijk undulations.
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FIG. 2 (color online). The excess DNA length in the knot,
pD
 � R
, against p� p1=3. The meaning of these variables is
explained in the text. Data points are taken from the work [15].
Linear fit corresponds to the assumption that D
 does not depend
on the knot type, on p. Curved line corresponds to our theory.
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