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We investigate the minimum conductivity of graphene within a quasiclassical approach taking into
account electron-hole coherence effects which stem from the chiral nature of low energy excitations.
Relying on an analytical solution of the kinetic equation in the electron-hole coherent and incoherent
cases, we study both the electrical and the thermal conductivity whose relation satisfies the Wiedemann-
Franz law. We find that most of the previous findings based on the Boltzmann equation are restricted to
only high mobility samples where electron-hole coherence effects are not sufficient.
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Introduction.—Single graphite layers (graphene) have
been found in the free state only recently [1], and their
transport properties have immediately attracted much at-
tention from both experimental [2–8] and theoretical [9–
16] investigators. The reason for such an explosion of
interest is a number of very unusual transport properties
including (i) a nonvanishing electrical conductivity even at
zero carrier concentration (minimum conductivity phe-
nomena) and (ii) independence of this minimum conduc-
tivity of temperature. Besides these unconventional
transport properties, many related phenomena have been
studied in graphene such as weak localization [16], the
Klein paradox [14], etc. The remarkable electronic prop-
erties of graphene are usually attributed to the particular
spectrum of excitations [17] which consists of two conical
bands and is described by a two-dimensional analog of the
relativistic Dirac equation. For a review concerning the
history, fabrication, fundamental properties, and future
applications of graphene, we refer to the recent article [18].

To investigate the transport properties (i) and (ii) of
graphene, several different approaches have been applied
including the Kubo formalism [10–12], direct calculations
of the transmission probability for ballistic samples
[12,15], and the Boltzmann equation [9,11]. At first sight,
the latter approach does not seem to be applicable to
investigating minimum conductivity since the quasiclass-
ical description is expected to fail at low Fermi energies EF
as soon as EF��EF� becomes comparable with @. The
carrier momentum relaxation time �, on the other hand,
diverges at EF � 0 [11] for short-range scatterers studied
here as well. Thus, the product EF��EF� depends at EF !
0 on the scattering parameters rather than the carrier con-
centration and can acquire values much lager than @ even at
zero doping. In this Letter, we solve the kinetic equation
for Dirac fermions including off-diagonal elements of the
distribution function in the helicity basis which are
strongly connected with the electron-hole coherence or
Zitterbewegung effects studied recently in graphene by
Auslender and Katsnelson [19]. We find that the off-
diagonal elements essentially contribute to the minimum
conductivity in low mobility samples, and, thus, the con-

clusions obtained in Ref. [9] are restricted to only quite
perfect graphene sheets. To discuss our findings, we ad-
duce both the electron-hole coherent and the conventional
solutions of the kinetic equation. As an application, the
electrical and thermal conductivity is calculated.

Preliminaries.—The carriers in the � system of gra-
phene near half filling can be described by the Dirac
Hamiltonian

 H � @v0��xkx � �yky�; (1)

where v0 � 106 ms�1 is the effective ‘‘speed of light,’’
�x;y are the Pauli matrices, and k is the two-component
particle momentum. The eigenstates of (1) have the form

 �k��x; y� �
1���
2
p eikxx�ikyy

1
�ei�

� �
; (2)

where tan� � ky=kx, and the energy spectrum readsEk� �
�@v0k. The velocity matrix in the basis (2) is

 

v
v0
� ex

cos� �i sin�
i sin� � cos�

� �
� ey

sin� i cos�
�i cos� � sin�

� �
:

(3)

Let us first consider the Boltzmann equation for charge
carriers in the presence of impurity scatterers described by
the effective potential

 V�r� �
qeZ
r
e�r=R; (4)

where eZ and q are the impurity atom and carrier electro-
static charge, respectively, and R is the screening radius.
The potential (4) differs from its conventional short-range
�-function approximation [11] by the additional fitting
parameter R. As we shall see below, the minimum con-
ductivity value is governed by both the impurity concen-
tration and the screening radius, whereas the carrier
mobility turns out to be R-independent. It seems to be
necessary to introduce such a parameter in order to explain
the experimental picture [5] where two samples made out
of the same graphene flake (i.e., having equal mobility)
demonstrate essentially different minimum conductivity
values. This difference is attributed to the screening pa-
rameter R in our model.
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Electron-hole incoherent solution.—In linear order in
the homogeneous electric field E, the Boltzmann equation
reads

 

�
df�
dt

�
coll
� �qEv�

�
�
@f0�Ek��
@Ek�

�
; (5)

where we have divided the distribution function f��k� �
f0�Ek�� � f

1
��k� into an equilibrium contribution f0�Ek��

and a nonequilibrium part f1
��k�, and v� (with � 2 f�g)

are the diagonal elements of the velocity operator in the
helicity basis; cf. Eq. (3). Assuming elastic scattering ful-
filling the microreversibility condition, the collision term
can be written as

 

�
df�
dt

�
coll
�
X
�0

Z d2k0

�2 fw�k�;k
0�0��f�0 �k0� � f��k�	g;

(6)

where the scattering probability w�k�;k0�0� can be easily
found from Fermi’s golden rule:

 w�k�;k0�0� �
4�R2V2

0

@
��Ek� � Ek0�0 �



1� ��0 cos��0 � ��

1� R2�k2 � k02 � 2kk0 cos��0 � ��	
:

(7)

Here V0 � �qeZ
����
N
p

is an effective scattering potential,
with N being the impurity concentration, and the four-
fold (valley and spin) degeneracy is taken into account
by the factor of 4 in the integrand. The exact analytical
solution of Eq. (5) can be given in terms of the nonequi-
librium part of the distribution function f1

� � qEv���k�

��@f0�Ek��=@Ek�	, with ��k� given by

 ��k� �
1

k
@

2v0

4R2V2
0

2R4k4

1� 2R2k2 �
����������������������
1� 4R2k2
p (8)

 �
1

k
@

2v0

4R2V2
0

; Rk� 1: (9)

Electron-hole coherent solution.—So far we have ne-
glected the off-diagonal elements of the distribution func-
tion, a valid approximation if the decoherence of the
single-carrier state is a fast process compared to its relaxa-
tion described by the above equations. In general, a particle
described by the Hamiltonian (1) can be not only in one of
the states �k� or �k� but in an arbitrary superposition of
them. Therefore, generalizing the above considerations,
the distribution function is 2
 2 nondiagonal matrix
f̂�k�, and the kinetic equation contains the commutator
i
@
�H; f̂�k�	, which drops out if only the diagonal elements

of f̂�k� (with respect to the helicity basis) are retained. In
the linear response regime, the kinetic equation explicitly
reads
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df̂
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�
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�
i
@

0 f12�Ek� �E��
f12�Ek� �E�� 0

� �

�qE
�v11��
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	 v12

2Ek�
�f0
Ek�
� f0

Ek�
�

v21

2Ek�
�f0
Ek�
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Ek�
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0
@
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A;

(10)

with the collision term given by the generalized expression
[20]
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df̂
dt

�
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��1

�
Z d2k0

�2

X
�0;�01
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0
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and K��1

�0�01
being

 K��1

�0�01
� ��R2V2

0=@�



1� ��0�1�

0
1 � ��

0ei��
0��� � �1�

0
1e
�i��0���

1� R2�k2 � k02 � 2kk0 cos��0 � ��	
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(12)

Note that the collision term includes off-diagonal elements
of f̂ and in that way significantly enhances the complexity
of the kinetic equation. However, by somewhat more tedi-
ous calculations, one can again construct an analytical
solution to Eq. (10) with nonequilibrium terms given by

 f1
11 � qEv11��k�

��
1�

1

2�

��
�
@f0�Ek��
@Ek�

�
�

1

2�




�
�
@f0�Ek��
@Ek�

�
�

1

2�Ek�
�f0
Ek�
� f0

Ek�
�

�
; (13)

 f1
12 �

qEv12��k��
1
2�

1
2��

1� 2iEk���k�=@

�
1

Ek�
�f0
Ek�
� f0

Ek�
�

�

�
�
@f0�Ek��
@Ek�

�
@f0�Ek��
@Ek�

��
; (14)

and f1
22, f1

21 can be obtained from Eqs. (13) and (14) just by
exchanging the indices belonging to Ek and v accordingly.
Here we have introduced the novel electron-hole incoher-
ence parameter � � 4E2

k��
2�k�=@2. In order to simplify

the solution, we use ��k� given by Eq. (9); thus, � �
@

4v4
0=4R4V4

0 is independent on k. In the limit case of
weak scattering (�� 1), the diagonal elements f1

11 and
f1

22 are the same as in the electron-hole incoherent case and
are given by f1

�, � 2 f�g, whereas the off-diagonal ele-
ments f1

12 and f1
21 are real and, as we shall see from

Eq. (15), do not contribute to the current.
Electrical conductivity.—The electrical current reads

 j � 4q
Z d2k

�2��2
�v11f11 � v22f22 � 2=v12=f12�; (15)

where the factor of 4 is due to the fourfold degeneracy.
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Let us first concentrate on the electron-hole incoherent
case when �� 1. By utilizing Eq. (9), we find from
Eq. (15) for the conductivity

 � 
 �0 �
q2
@v2

0

4�R2V2
0



q2 ����

�
p

h
; (16)

which, in particular, depends neither on temperature nor on
the carrier concentration. Thus, the most striking features
of the experimental findings are reproduced: (i) The con-
ductivity is not zero even at zero carrier concentration;
(ii) this minimum conductivity does not depend on tem-
perature. Note that the above result is not universal; i.e.,
the minimum conductivity at zero Fermi energy can
change from sample to sample in accordance with recent
experimental reports [5,7,21]. Moreover,

����
�
p

> 4 (i.e.,
1=� < 0:0625) for the vast majority of samples [5,7].

Let us take into account higher-order terms in ��Rk�.
Then, instead of Eq. (16), we have at zero temperature

 � �
q2

�@2 ��kF�EF; (17)

 � �0 � q
2 @v

2
0

2V2
0

n; 2�R2n� 1; (18)

where the carrier (electron) concentration is given by n �
k2
F=�, with kF � EF=@v0 being the Fermi wave vector.

Thus, the low-temperature conductivity at low doping in-
creases linearly with carrier concentration, in accordance
with the experiments. Deviations from linear dependency
can be described by taking into account the k dependence
of the relaxation time given by Eq. (8). We emphasize that,
in contrast with Ref. [5], we deal with two fitting parame-
ters R and V0 which can be deduced by using Eq. (18) and
the experimental data [2,5,7]. Indeed, from Eq. (18) we can
define the electron mobility as � � q@v2

0=�2V
2
0 �, which

does not depend on the screening radius R. The effective
scattering potential then reads V0 � v0

������������������
q@=�2��

p
, and, for

the most common samples with � ranging from �103 to
2
 104 cm2=�Vs�, we have V0 covering the range from
0.1 meV to 0.06 eV. The screening radius can be estimated
from Eq. (16) by assuming that �0 is of the order of 4q2=h.
Then we have R of the order of @v0=V0 covering the range
from 10�3 (high mobility samples) to 10�6 cm (low mo-
bility samples). Now one can see that the linear approxi-
mation (18) in terms of 2�R2n at n� 1012 cm�2 holds
only in relatively low mobility samples, in accordance with
the experimental reports [5,7]. The difference between
��n� and its linear approximation can be seen in Fig. 1.

To consider the low mobility samples properly, we
should take into account the terms proportional to 1=� in
the solution (13) and (14). Note, above all, that the quasi-
classical approach is doubtful at � � 1 since EF��kF� � @,
and the carrier mean free path becomes comparable with its
de Broglie wavelength. Nevertheless, an asymptotic de-
pendence of the solution close to �� 1 can give us a clue
to what happens in this regime. The direct integration of

Eq. (15) leads to the logarithmic divergence due to the
terms proportional to f0

Ek�
� f0

Ek�
in Eqs. (13) and (14).

This problem has been solved in Ref. [19] by introducing
some ultraviolet cutoff energy Ec which allows one to get a
finite value for the conductivity but still has an unclear
physical meaning itself. In our opinion, the divergence of
the integral in Eq. (15) is a clear manifestation of obvious
limitations inherent in the quasiclassical approach at
EF��kF� � @. Thus, we expect the ultraviolet cutoff Ec to
have a quantum mechanical origin. At EF � 0 and zero
temperature, the quasiparticle energy will fluctuate around
E � 0 with a variance �E related to the relaxation time via
the uncertainty relation �E�� @. Obviously, Ec is the
maximum energy uncertainty consistent with two subse-
quent scattering events (‘‘measurements’’) separated by a
time interval ��kF�, i.e., Ec � @��1�kF�. Then Eq. (15) can
be integrated easily, and the minimum conductivity for low
mobility samples reads

 �min � �0

�
1�

2

�

�
1�

1

2
ln

��������4

�

��������
��
: (19)

The difference between �min and �0 given by Eq. (16) is
shown in Fig. 1 (inset). We emphasize that Eq. (19) could
not be mathematically well grounded in the framework of
our quasiclassical model because of quantum effects which
obviously contribute to the conductivity minimum at ��
1. What is certainly true is that the additional term in the
conductivity minimum stemming from the electron-hole
coherence increases in low mobility samples and partly
compensates the diminution of the leading term given by
Eq. (16). This mechanism might be responsible for the
nonmonotonic dependence of the conductivity minimum
on the impurity concentration (inverse mobility) observed
recently [7].

σ/
σ 0

R  n2π

Exact expression

Eqs. (17) and (8).
given by

Linear approximation
given by Eq. (18)
for low mobility samples

qR /hµ2

σmin
σmin

σ0

2q /h
given by
Eq.(16)

given by Eq.(19)
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FIG. 1. Conductivity dependence on the carrier concentration;
cf. Ref. [5]. Inset: The minimum conductivity vs inverse mobil-
ity; cf. Ref. [7]. In order to preserve the validity of the quasi-
classical description, the parameters are chosen so that �> 1.
The electron-hole coherence correction is nevertheless clearly
seen.
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We have also studied the conductivity by choosing
potential profiles different from the one given by Eq. (4).
To give an example for a hard-wall potential when V�r� �
U0 at r � r0, and V�r� � 0 at r > r0, we obtain for the
conductivity the same formulas as before besides the sub-
stitutions V0 ! �r0

����
N
p

U0 and R! r0=2. The mobility
becomes r0-dependent in this case, which makes it difficult
to fit our model to the experimental data [5]. Most interest-
ing is, however, the �-function shaped scattering potential
which can be used as a model for neutral impurities or
lattice imperfections. In this case, the Boltzmann equa-
tion (5) can be solved easily, and the conductivity does not
depend on the carrier concentration at all, which, in turn,
contradicts the measurements. Thus, our short-range po-
tential choice given by Eq. (4) fits best to recent experi-
mental data.

Thermal conductivity.—By following our method, it is
possible to show that the thermal conductivity of graphene
also has a minimal value which does not depend on the
concentration but depends on the temperature according to
the Wiedemann-Franz law as was pointed out in
Refs. [22,23]. Indeed, in the presence of the temperature
gradient rT, we have at �� 1 in the linear response re-
gime f1

� � �rT=T�v���k��Ek� � EF���@f0�Ek��=@Ek�	.
The further calculations of the thermal flow are very simi-
lar to that for the electrical current. In particular, the
minimum thermal conductivity takes the form

 �th�EF � 0� 
 �th
0 �

�@v2
0

12R2V2
0

T: (20)

The influence of electron-hole coherence on �th
0 can be

described by Eq. (19) in full analogy with the electrical
conductivity.

Conclusions.—We have solved the quasiclassical ki-
netic equation for carriers in a single graphene sheet in-
cluding the off-diagonal elements of the distribution
function in the helicity basis. The analytical solution al-
lows us to investigate the influence of the electron-hole
coherence on the minimum conductivity phenomena as
well as to discover the limitations of previous studies based
on the Boltzmann equation. We have introduced a special
parameter � that distinguishes the electron-hole coherent
and incoherent regimes. It is noteworthy that � can be
deduced directly from the minimum conductivity measure-
ments since it is incorporated into�0 in a simple way given
by Eqs. (16) and (19). Moreover, our approach successfully
describes the linear dependence of the conductivity above
its minimum which is usual for low mobility samples.
Finally, we predicted the existence of the thermal conduc-
tivity minimum which was not observed so far.
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