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We determine the ground-state phase diagram of the one-dimensional half-filled Hubbard model with
on-site (nearest-neighbor) repulsive interaction U (V) and nearest-neighbor hopping ¢ using the density-
matrix renormalization group technique. Based on the results of the excitation gaps, Luttinger-liquid
exponents, and bond-order-wave (BOW) order parameter, we confirm that the BOW phase appears in a
substantial region between the charge-density-wave (CDW) and spin-density-wave phases. Each phase
boundary is determined by multiple means and it allows us to make a cross-check on the validity of our
estimations. We also find that the BOW-CDW transition changes from continuous to first order at the
tricritical point (U,, V,) = (5.89¢,3.10¢) and the BOW phase shrinks to zero at the critical end point

(U, V,.) = (9.25¢,4.76¢).
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For several decades quasi-one-dimensional (1D) mate-
rials, e.g., organic conductors [1], conjugated polymers [2],
and carbon nanotubes [3], have been a main subject of
research in the field of condensed matter physics. A mini-
mal electronic model which can describe their basic prop-
erties is the 1D extended Hubbard model (EHM) [4]. The
Hamiltonian is given by

H = _tz(CL.CH_IO. + HC) + UZniTn,»l
i,o i

+ VD Righision (1)

ioco’

where c;r(, (c;s) is creation (annihilation) operator of an
electron with spin o at site i, and n;, = CL_C,-O. is number
operator. ¢ is the nearest-neighbor hopping term and U (V)
is on-site (nearest-neighbor) Coulomb interaction. Despite
the geometric simplicity, this model at half filling is be-
lieved to exhibit a variety of phases due to strong quantum
fluctuations.

Within the g-ology scheme [5], the system has merely
two insulating phases when the interaction strengths are
positive: for U <2V the ground state is 2kp-charge-
density wave (CDW), where both the charge and spin
excitations are gapped; for U > 2V a Mott insulator with
2kp-spin-density wave (SDW), where the spin excitation
has no gap. However, based on nonperturbative numerical
results, Nakamura argued that there is also a bond-order-
wave (BOW) phase, where the ground state has a long-
range staggered bond order, between the CDW and SDW
phases [6]. So far much effort has been devoted to fix the
ground-state phase diagram both analytically [7-12] and
numerically [13—17]. Nevertheless, surprisingly their re-
sults are in few (quantitative) agreements with each other.
The aim of this Letter is to produce a highly accurate phase
diagram of the 1D half-filled EHM and to resolve the
apparent contradictions.
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We employ the density-matrix renormalization group
(DMRG) method, which is one of the most powerful
numerical techniques for studying 1D many-body systems
[18]. With open-end boundary conditions, ground-state
and low-lying excited-states energies as well as expecta-
tion values of physical quantities can be obtained quite
accurately for very large finite-size systems [up to sites
L ~ 0O(1000)]. In DMRG procedure we keep m = 1200 to
3000 density-matrix eigenstates, which are much larger
than those in the previous DMRG studies [13,16,17], and
all the calculated quantities are extrapolated to the m — oo
limit. In this way, the maximum truncation error, i.e., the
discarded weight, is less than 1 X 10~!!, while the maxi-
mum error in the ground-state energy is AE/t~
1073-1077. We strongly argue that such large m values
and the m extrapolation are essential for required accuracy
of the measurements.

In order to determine the phase diagram including two
phase boundaries, we calculate several physical quantities.
Each boundary is determined by multiple means from the
quantities and it allows us to do a cross-check on the
estimates. First, to obtain the BOW-CDW boundary we
calculate the charge gap

A, = Hm[E(N +2,0) + E(N = 2,0) = 2E(N, 0)]/2,
(2

where E(N,, S.) is the ground-state energy for a given
number of electrons N, and z component of total spin S,.
We take N = L for half-filled case. In the atomic limit =
0, the phase boundary becomes a line U = 2V with A, =
U(= 2V). If finite ¢ is introduced, the system can gain
some kinetic energy of the order of ¢ near the BOW-
CDW instability due to the competition between the on-
site and nearest-neighbor Coulomb interactions. Thus, the
charge gap is minimized at the BOW-CDW boundary.
Next, to evaluate the SDW-BOW boundary we calculate
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the spin gap

A, = LIEEO[E(N’ 1) — E(N, 0)]. 3)
If V < U/2, the system is a Mott insulator with 2k SDW.
The electrons are uniformly distributed over the system, so
that there is no spin gap. As V increases, the charge
fluctuations are enhanced, and then a transition from the
SDW phase to the BOW phase occurs. In the BOW phase,
the electrons polarize alternatively and spin-singlet bound
states are formed on dimers. Consequently, we can make
an estimate of the SDW-BOW boundary as a point where
the spin gap begins to develop. However, for some parame-
ters the spin gap is too small to figure out if it remains
finite, i.e., A, < 10~ %¢. Therefore, for verifying the pres-
ence of the spin gap we consider the spin-spin correlation
function

$() = 7S MDED — D) @)

]

with ¢ =27/L and s; = n; — n;. According to the
Luttinger liquid theory [19], the long-range behavior of
this function is governed by the LL spin exponents K, [ =
lim,_,7S(q)/q). We find K, =0 in the spin-gapped
phase and K, = 1 everywhere else in the thermodynamic
limit [20]. This criterion enables us to estimate the SDW-
BOW critical point precisely. Although we can obtain all
the phase boundaries with the quantities mentioned above,
the BOW order parameter is also studied for making extra
sure. The order parameter simply gives the boundaries
between the BOW phase and the other phases. The BOW
operator is given as

B; =33 (cl cisio + cliypci), 5)
(2

and we define the BOW order parameter (B) as an ampli-

tude of the BOW oscillation in the center of the system, i.e.,

(B) = lim;_,[(By/» — By j»+1)|. For (B) #0, a long-

range order of the BOW state appears.

A careful extrapolation of these quantities is necessary
to extract the correct value in the thermodynamic limit
L — o0. We thus study various lengths of chains with L =
32 to 512 and perform finite-size-scaling analysis based on
the L dependence of the quantities. Figure 1 shows the
finite-size-scaling analyses for (a) the charge gap, (b) spin
gap, (c) spin-spin correlation function, and (d) BOW pa-
rameter near the phase transitions at U = 4. The charge
(spin) gap is systematically extrapolated by performing a
least-squares fit to the fourth-order polynomial in 1/L,
reflecting the holon (spinon) band structure around the
band edge. Then, an estimation of the LL spin exponent
in the thermodynamic limit is not so simple for finite-size
calculations. In the spin-gapless phase, one cannot expect
easily find K, — 1 exactly due to logarithmic corrections.
However, the logarithmic corrections are known to vanish
at which the spin gap opens, in analogy with the dimeri-
zation transition in the J; — J, model [21]. In the spin-
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FIG. 1 (color online). Finite-size-scaling analyses for (a) the
charge gap, (b) spin gap, (c) spin-spin correlation function, and
(d) BOW order parameter near the phase boundaries at U = 4.

gapped phase, there is a similar difficulty as follows: if the
spin gap is small, the convergence of K, to 0 will obvi-
ously occur only for very large systems. As a result, we will
estimate the critical point where the spin gap opens by
7S(q)/q crossing 1 at ¢ — 0. This method was primarily
used in Ref. [14]. Let us now turn to the BOW order
parameter. Since the order parameter in the thermody-
namic limit is very small compared to the finite-size re-
sults, a well-controlled finite-size extrapolation is
mandatory. In our calculations, the most problematic
finite-size effects are the Friedel oscillation due to the
open edges. Assuming that the amplitude of the Friedel
oscillation in the center of a finite chain scales as L™ X»
[22], the BOW order parameter would be well extrapolated
as a function of 1/L%». For example, we may expect K, =
0.5 in the vicinity of the SDW phase, so that (B) is scaled
better by 1/+/L than by 1/L near the SDW phase.

Figure 2 shows the extrapolated results of (a) the charge
gap, (b) spin gap, (c) spin correlation function, and
(d) BOW order parameter around the phase transitions
(U ~ 2V) as a function of V/t for U = 4t. Let us look at
the charge gap to estimate the BOW-CDW phase boundary.
The charge gap decreases with approaching to a point V =
2.164t and vanishes smoothly at the point. In other words,
both the BOW and CDW insulating gaps start to develop
gradually at the point. It means that a continuous transi-
tion between the BOW and CDW phases occurs at the
critical point V = 2.164¢. Note that the BOW insulating
gap is of the nature of the Mott type. We now turn to the
SDW-BOW phase boundary. We find that the spin gap is
finite for V = U/2 and decreases with decreasing V. The
critical point appears to lie around V = 1.9¢ from the dis-
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FIG. 2 (color online). Extrapolated results of (a) the charge
gap, (b) spin gap, (c) spin-spin correlation function, and
(d) BOW order parameter near the phase transition for U = 4.
The dashed and dotted lines denote the SDW-BOW and BOW-
CDW critical points, respectively. Insets: same quantities plotted
with another scale.

appearance point of the spin gap. The crossing point with
wlim,_,S(¢q)/q = 1 gives a more precise estimation of the
critical point V = 1.877t. Correspondingly, the BOW order
parameter has finite values only in the region 1.877¢t =
V = 2.164t. With increasing V, (B) rises exponentially
from the SDW-BOW critical point, reaches the maximum
value ~0.18 around V = 2.14¢, and goes down to zero at
the BOW-CDW critical point. Note that both values of the
critical points are in good agreement with those of the
previous quantum Monte Carlo (QMC) study [15].

Figure 3 shows the same quantities as in Fig. 2 but for
U = 8t. Near the SDW-BOW phase boundary V = 4.039¢,
the behavior of all the quantities is qualitatively similar to
those in the case of U = 4t. On the other hand, the physical
properties seem to be discontinuous at the BOW-CDW
phase boundary V = 4.142¢, which indicates that the tran-
sition is of first order. At the boundary, the charge gap
remains finite and the slope of A, with respect to V is
discontinuous. However, the value of A, must be continu-
ous since a competition between two kinds of charge
configuration, i.e., CDW and uniform, leads to the BOW-
CDW transition. Associated with this charge redistribu-
tion, the spin gap jumps by 2 orders of magnitude. In the
CDW phase, it comes rapidly close to a line A, = 3V — U
which becomes exact in the V/U — oo limit. Also, the
BOW order parameter develops with approaching the
BOW-CDW boundary and disappears at the transition
point.

Whereas the BOW-CDW transition is continuous for
U = 4, it is of first order for U = 8¢. Hence, a tricritical
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FIG. 3 (color online). The same quantities as in Fig. 2 but for
U = 8t¢. Solid line in the inset of (b) denotes the spin gap in the
V/U — oo limit, i.e., A; =3V — U.

point (U,, V,) at which the transition changes from con-
tinuous to first order, must exist on the BOW-CDW bound-
ary, as suggested in Refs. [13,15]. To evaluate the tricritical
point, we examine the LL charge exponent K, via the
derivative of charge structure factor at ¢ = 0 [23]
K, = lim%Zei(zw/m(kfl)«”k”z) — (). (6)
kI

L—o0

Note that K, is finite only in the continuous Gaussian
critical point [6,11] for small U and zero everywhere
else. It was shown that the LL exponents can be obtained
quite accurately with DMRG method [24]. In Fig. 4(a), we
plot DMRG results of K, as a function of U/t on the BOW-
CDW boundary line. As U/ increases, K, decreases from
1, reaches 1/4 at (U, V,) = (5.89¢,3.10¢), and drops dis-
continuously to O; namely, a metal-insulator transition
occurs at U = U,. Moreover, the K p curve is well fitted
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FIG. 4 (color online).
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FIG. 5 (color online). DMRG phase diagram of the 1D half-
filled EHM. The BOW phase exists between the SDW and CDW
phases.

by a function K, —1/4 =0.061,/(U, — U)/t near the
tricritical point [see inset of Fig. 4(a)]. It implies that the
transition is of the Kosterlitz-Thouless type. Let us now
consider a point at which the BOW phase shrinks to O,
which is called a “critical end point”’. The BOW state is
still stable around the tricritical point and therefore the
critical end point (U,, V..) would exist for U, > U,. For a
fixed U (>U,), the BOW order parameter has a maximum
around the BOW-CDW boundary. To find the critical end
point, we plot (B) on the BOW-CDW boundary as a
function of U/t in Fig. 4(b). (B) decreases with increasing
U/t and reaches to 0 at (U,, V,.) = (9.25¢, 4.76¢). For U =
U., the transition is always first-order SDW-CDW one.

In Fig. 5 we sum up our results as the ground-state phase
diagram. One can see good agreement with the weak-
coupling renormalization group (RG) results [11] as well
as the strong-coupling perturbation results [9]. The BOW
phase has a maximum width at U ~ 4¢, which is concerned
with the fact that the effective nearest-neighbor exchange
interaction is the largest at the intermediate couplings of U
in the half-filled Hubbard model [25]. It is so because the
large exchange interaction promotes the formation of spin-
singlet pair if the charge fluctuation is introduced by V.
Accordingly, we confirm that the magnitude of the spin gap
is maximized around U ~ 4¢ in the BOW phase.

In summary, we study the ground-state phase diagram of
the 1D half-filled EHM using DMRG method. We calcu-
late several quantities with considerable accuracy to deter-
mine the SDW-BOW and BOW-CDW boundaries. As for
the phase boundaries, our data agree quantitatively with the
RG results in the weak-coupling regime (U =< 2¢), with the

perturbation results in the strong-coupling regime (U =
61), and with the QMC results in the intermediate-coupling
regime. We also find that the BOW-CDW transition
changes from continuous to first order at the tricritical
point (U, V,) = (5.89¢,3.10¢) and it locates far from the
critical end point (U,, V,.) = (9.25¢, 4.761). Since the pre-
vious DMRG results could be insufficient in accuracy, our
results are not in agreement with them. We thus believe
that our DMRG results bring a sound conclusion and put an
end to the controversy on the phase diagram of the 1D half-
filled EHM.
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