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We study the dynamics of periodic arrays of micrometer-sized liquid-gas menisci formed at super-
hydrophobic surfaces immersed into water. By measuring the intensity of optical diffraction peaks in real
time, we are able to resolve nanometer-scale oscillations of the menisci with submicrosecond time
resolution. Upon driving the system with an ultrasound field at variable frequency, we observe a
pronounced resonance at a few hundred kilohertz, depending on the exact geometry. By modeling the
system using the unsteady Stokes equation, we find that this low resonance frequency is caused by a
collective mode of the acoustically coupled oscillating menisci.
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Superhydrophobic surfaces have attracted much theo-
retical and experimental interest [1]. The entrapment of gas
at the textured surface reduces the actual interfacial area
between the solid and the liquid, which is at the origin of
the distinctive properties of these materials, including the
large contact angle, the low contact angle hysteresis [2],
the self-cleaning effect [3], and the large hydrodynamic
slip [4]. The superhydrophobic state is closely related to
the shape of the microscopic liquid-gas interfaces spanning
between the ridges of the texture [5]. In this Letter, we
characterize the dynamics of these micromenisci and in-
troduce an optical diffraction measurement that reveals
their nanoscale motion. We measure in real time the optical
diffraction intensity from a periodic array of micromenisci.
By driving the system with an ultrasound field at variable
frequency, we measure its frequency response, and we
identify a well-defined resonance peak with a center fre-
quency well below the expectations for a single micro-
meniscus. By modeling the system using the unsteady
Stokes equation and monopole interaction, we show that
this frequency reduction is due to acoustic coupling be-
tween menisci.

Figure 1 shows the geometry of our system. It consists of
1� 1 mm2 wide hexagonal and square arrays of
micrometer-sized cylindrical holes (radii R � 2 �m or
3 �m, depth H � 15 �m, nearest neighbor distance a �
15 or 25 �m). The samples were fabricated from Si (110)
using standard microlithography. Subsequently, the sur-
faces were hydrophobized by vapor deposition of a mono-
layer of 1-H; 1-H; 2-H; 2H-perfluorodecyltrichlorosilane,
following Ref. [6]. The advancing and receding contact
angles on an unstructured surface are �a � 116� and �r �
104�, respectively. Upon immersing the samples into dem-
ineralized water, ambient air is entrapped in every hole,
leaving a water-air meniscus behind that is pinned at the
ridge of the hole. Owing to the hydrostatic pressure, the
menisci are bent inwards with equilibrium curvature �0 �

�gh=� (as we have also checked by independent measure-
ment), where g is the acceleration of gravity, � is the water
surface tension, and h � 0:1 m is the distance between the
sample and the free water surface. This implies that the
system is in diffusion equilibrium and the gas pressure in
the hole is the ambient pressure. An Ar-ion laser (� �
488 nm, s-polarized) is used to illuminate the sample
under an angle typically between 60� and 70� with respect
to normal incidence (see Fig. 2). The diffracted intensity is
measured with a photodiode positioned at a selected dif-
fraction peak, typically chosen in the vicinity of the spec-
ular reflected beam. A broadband piezoelectric ultrasound
transducer is placed at its focal distance from the sample.
The ultrasound transducer is excited to emit finite wave
trains by using an arbitrary function generator. The ultra-
sound pressure at the sample is of the order 102–103 Pa,
which is small compared to a critical static pressure above
which filling occurs: Pc � 2� cos��a�=R � 2:1� 104 Pa.
To check the dynamic stability of the menisci, we in-
creased the ultrasound pressure to much larger values
and observed how the intensity oscillations disappeared
at a defined threshold. The ultrasound pressure is kept
constant during a frequency sweep by controlling the
driving voltage according to the transducer frequency re-
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FIG. 1. (a) Schematic figure of a single micromeniscus.
(b) Pattern of an array of micromenisci. Arrows denote the
primitive translations and nearest neighbor distance a.
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sponse. Figure 2(c) shows typical raw data corresponding
to the beginning of a wave train. After a transient lasting
for a few oscillation cycles, the signal becomes sinusoidal
with a constant amplitude. This amplitude is extracted
from the raw data by calculating the root mean square.

The diffracted intensity depends in a highly nonlinear
way on the deflection of the menisci. To assure a linear
relation between the actual deflection and the measured
intensity, the menisci oscillations have to be small. This
can be seen in Fig. 3(a). While the diffracted intensity
follows the sinusoidal driving pressure at low driving
amplitudes (solid line), it is distorted at larger driving
amplitudes (dashed line). Prior to an experiment, we re-
duce the ultrasound pressure until the undistorted sinus is
observed.

To find the magnitude of the corresponding meniscus
deflections, we consider the optical diffraction of the sam-
ple. In the Fraunhofer limit, the diffracted intensity is
proportional to the intensity scattered by a single unit
cell, and, for each unit cell, the scattered intensity is
governed by the interference of the elementary waves
emitted from the cell volume [7]. In our case, the incident
angle is large, and no light reaches the bottom of the holes
such that the interference takes place between the waves
emitted from the plane silicon surface and the waves
emitted from the meniscus. Qualitatively, as the meniscus
is deflected—consider the position � of the apex of the
meniscus—the intensity of a diffraction order (with dif-

fraction angle � incident angle) changes sinusoidally with
a period T � �=�2n cos�#�	, where n � 1:33 is the refrac-
tive index of water. To analyze these simple observations in
detail, we performed a diffractive optics calculation using
the multilayer rigorous coupled wave analysis in the for-
mulation of Ref. [8]. This method allows for calculating an
exact solution to the Maxwell equations for the optical
response of arbitrary periodic surface profiles. In
Fig. 3(b), we show the resulting diffraction intensity as a
function of the meniscus deflection. The typical distance
between two adjacent peaks corresponds to the period
evaluated from the simple Fraunhofer arguments above.
The result shows that the diffracted intensity is indeed
linear in the meniscus deflection in a range �
�l;��l	
around the meniscus equilibrium position �0, and we find
�l � 90 nm. Note that the extent of the linear range de-
pends on the incident angle #. It is larger for larger
incident angles, as can be seen readily from the simple
expression for T. Thus, the large angles that are used in the
experiment allow for large meniscus oscillations. For inci-
dent angles above the angle of total reflection between
water and air (48.6�), in addition the relative contribution
of the menisci to the scattered intensity is large.

The theoretical result for the linear range is the key to
converting the measured intensity variations into absolute
meniscus deflections. Since we have to assure linearity
between intensity and meniscus deflection at all ultrasound
frequencies, the peak of the resonance curve shown in the
following has the height �l. The slope of the linear range
together with the relative noise of the photodiode deter-
mines the resolution of the deflection measurement. It is of
the order 1 nm under the given conditions.

Figure 4 shows a typical measured frequency response.
The sample displays a single resonance at fr�153�
5 kHz. Similar curves were obtained for all samples.
Table I shows that the observed resonance frequency in-
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FIG. 3 (color online). (a) Time-resolved intensity of the �1; 0�
diffraction order, corresponding to small ultrasound pressure
(�P � 400 Pa) (solid line) and large ultrasound pressure (�P �
800 Pa) (dashed line). (b) Calculated intensity of the first dif-
fraction order as a function of meniscus deflection for a rectan-
gular surface profile with groove width w � 2R (# � 66�). The
data are displayed simultaneously in terms of the displacement �
and the nondimensionalized curvature �R. Both are related
geometrically by � � 2=��1
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curvature �0R � 0:04 corresponds to �0 � 30 nm.
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FIG. 2 (color online). (a) Schematic figure of the experiment.
(b) Inverted photograph of the diffraction pattern (# � 60�).
Numbers indicate Miller indices of diffraction orders. (c) ac
component of the light intensity measured in the �1; 0� diffrac-
tion order at the beginning of an ultrasound wave train.
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creases both with increasing nearest neighbor distance and
with decreasing hole size.

To understand the observations quantitatively, we con-
sider first the response of a single meniscus under the
influence of the pressure field P�t� � P0 ��Pei2�ft,
where f is the ultrasound frequency, P0 is the ambient
pressure, and �P is the amplitude of the ultrasound pres-
sure. Since �0 � ��; R, as follows with the values eval-
uated above, we approximate the meniscus as flat in
equilibrium and its deflections as parabolic ��r� � ��1

r2=R2�. The parabolic shape implies that the curvature is
uniform up to O��3� giving right to the Laplace law. As
described in Ref. [9], the smallness of the deflections
�� � R, and the high frequency f 	=R2 of the oscil-
lations (	 kinematic viscosity), allow us to omit the non-
linear term in the Navier-Stokes equation, and hence the
dynamics of the system is governed by the unsteady Stokes
equation. The system can then be described as a harmonic
oscillator

 f��!�� � i��!�� � Kg��� � 
�P�: (1)

The transfer functions � and � account for the inertia and
the viscous damping, respectively, due to the oscillatory
flow fields. All quantities are nondimenionalized !� �
2�fR2=	, ��� � �=R, and �P� � �PR2=��	�. Since
polytropic and thermal dissipative effects [10] can be
neglected, the potential term reduces to a dimensionless
spring constant K � R=��	2��P0R

2=�2H� � 4�	. The first
term with the ambient pressure is due to the isothermal
compression of the gas and is negligible throughout this
work, and the second term with the surface tension� is due
to the surface energy of the liquid-gas interface. The
computation of � and � is performed by solving the
unsteady Stokes equation in cylindrical coordinates with
classical no-slip and free slip boundary conditions at the

solid-liquid and the liquid-gas interface, respectively. A
detailed account of the calculations will be given elsewhere
[11]. While analytical expressions can be found for both
the high and low frequency limits, � and � have to be
computed numerically in the intermediate frequency range
100 <!� < 102, which is relevant for the present experi-
ments. The dashed-dotted line in Fig. 4 shows the solution
for a R � 3 �m hole with physical parameters of water
� � 103 kg=m3, 	 � 10
6 m2=s, � � 73� 10
3 N=m,
and ultrasound pressure �P � 390 Pa as used in the re-
spective experiment. The obtained resonance frequency is
approximately 5 times larger than the one observed experi-
mentally. Clearly, the single meniscus theory fails to de-
scribe the dynamics of the system.

To resolve the discrepancy, we consider the dynamic
coupling between the menisci. As the menisci oscillate in
the external pressure field, they emit pressure waves that
affect the other menisci. Denoting the nondimensionalized
distance between the ith and the jth menisci by d�ij �
dij=R, the additional force acting on the ith meniscus
can be expressed in terms of a multipole expansion

���j !

�2=�4d�ij� �O�d
�
2
ij �, where ���j is the deflection

amplitude of the jth meniscus (see, e.g., [12,13]). To
analyze the dynamics of the entire meniscus array, we
extend the equation of motion of the single meniscus
[Eq. (1)] by the additional forces generated by all other
menisci, keeping only the monopole term. We arrive at the
coupled equations of motion

 f��!�� � i��!�� � Kg���i � 
�P� �
XN�M

i�j

!�2

4d�ij
���j :

(2)

The coupling term gives rise to an additional effective
mass, which reduces the resonance frequency, as required.
We solve Eq. (2) for the individual deflection amplitudes
���i by numerical matrix inversion. From the result, we
evaluate the mean h���i � j

PNM
i�1 ���i j=NM and the root

mean square h���2i1=2 � �
PNM
i�1 j��

�
i j

2�1=2=NM deflection
amplitude (see discussion below). The results are shown in
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FIG. 4 (color online). Frequency response of an array of
micromenisci with a hexagonal pattern, a � 15 �m, and R �
3 �m. Crosses show experimental data. The dashed-dotted line
shows the theory for a single meniscus. Theoretical data for the
array are displayed in terms of the mean (solid line) and the root
mean square deflection (dashed line).

TABLE I. Resonance frequencies of the lowest collective
mode fc as a function of lattice constant, pattern geometry,
and menisci radius. H and S denote the hexagonal and the square
pattern, respectively. fs denotes the resonance frequency of a
corresponding single meniscus, fr the experimental result.

R��m� a��m� Pattern N M fs (kHz) fc (kHz) fr (kHz)

3 15 H 66 76 805 159 153� 5
3 15 S 67 67 805 170 177� 5
3 25 H 40 46 805 258 230� 20
3 25 S 41 41 805 275 240� 20
2 15 H 66 76 1433 346 285� 20
2 15 S 67 67 1433 368 290� 20
2 25 H 40 46 1433 549 400� 20
2 25 S 41 41 1433 584 410� 20
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Fig. 4 with the solid and the dashed line, respectively. For
the moment note that both curves are nearly identical up to
frequencies well above the lowest resonance. The theoreti-
cally obtained resonance frequency fc � 159 kHz is in
excellent agreement with the experimental data, showing
that collective effects are crucial for the dynamics of the
system. Moreover, the good agreement shows that mono-
pole interaction is effective beyond its obvious range of
applicability where a R.

As can be seen in the inset in Fig. 4, the theory over-
estimates the amplitude of the resonance which is presum-
ably due to the neglect of the bulk dissipation that arises in
the collective flow field. Second, and more interestingly,
the theoretical data for the root mean square display a
second resonance at 290 kHz which is absent in the ex-
perimental data. To understand the latter effect, we plot the
calculated amplitude and phase for the two lowest reso-
nances as a function of the meniscus position within the
array in Fig. 5. For the lowest resonance, all menisci
oscillate essentially in phase, whereas at the second reso-
nance, the menisci in the center of the array and the ones
along the edge oscillate 180� out of phase and the ampli-
tude displays a node at the ring-shaped boundary between
the two regions. To evaluate the diffraction intensity for
such arrays of nonidentical scatterers, we note that the
variation of the meniscus deflection gives rise to phase
differences between the waves emitted from different
unit cells that are much smaller than 2�—owing to the
particular experimental condition assuring that the dif-
fracted intensity is linear in the meniscus displacement.
By extending the above Fraunhofer picture, one shows that
the diffraction intensity is linear in the individual menisci

deflections, and thus the experiment measures the mean
deflection. Thus, we have to compare the experiment to the
theoretical mean deflection, where the second resonance is
indeed nearly invisible. Note that the expression for the
mean as given above accounts for the phase since the
deflection amplitudes ���i are complex.

The reduction of the resonance frequency predicted by
the theory is confirmed for all surface patterns investigated
in the experiment (see Table I). Since the coupling between
the menisci is inversely proportional to the distance, the
frequency reduction is more pronounced for smaller lattice
constants. Similarly, it is more pronounced for the hexago-
nal lattices than for the square ones, owing to the larger
number of nearest neighbors. At this moment, we have no
clear explanation for the slight overestimation of the reso-
nance frequency for the samples with smaller radius.

In conclusion, highly mobile micromenisci are present
at the textures of superhydrophobic surfaces. Their dynam-
ics are determined by collective modes with resonance
frequencies that are much smaller than the resonance fre-
quency of a single isolated meniscus. Superhydrophobic
surfaces with particularly large contact angles or large slip
length are expected to show the lowest resonance frequen-
cies. Optical diffraction has proven to be an accurate tool
for studying superhydrophobic surfaces and their nano-
scopic hydrodynamics. It remains a challenge to extend
the optical diffraction technique to the accurate study of the
microscopic shape of the menisci, presumably by measur-
ing also the angular dependence of the diffraction pattern
and subsequently solving the inverse diffraction problem,
following upcoming ideas in theoretical diffractive optics.
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FIG. 5 (color online). Amplitude and phase of an array of
micromenisci with a hexagonal pattern, a � 15 �m, and R �
3 �m (a) at the fundamental collective mode (159 kHz) and
(b) at the second collective mode (290 kHz). Note that the color
scale for the phase is narrower in (a) as compared to (b).
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