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Mobility of Discrete Solitons in Quadratically Nonlinear Media
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We study the mobility of solitons in lattices with quadratic (¥, alias second-harmonic-generating)
nonlinearity. Using the notion of the Peierls-Nabarro potential and systematic numerical simulations, we
demonstrate that, in contrast with their cubic ( )((3)) counterparts, the discrete quadratic solitons are mobile
not only in the one-dimensional (1D) setting, but also in two dimensions (2D), in any direction. We
identify parametric regions where an initial kick applied to a soliton leads to three possible outcomes:
staying put, persistent motion, or destruction. On the 2D lattice, the solitons survive the largest kick and

attain the largest speed along the diagonal direction.

DOI: 10.1103/PhysRevLett.99.214103

Introduction.—In the past several years, tremendous
progress has been made in studies of nonlinear dynamics
in lattices [1]. To a large extent, this development was
driven by direct physical applications, such as optical
beams in waveguide arrays [2], Bose-Einstein condensates
in deep optical lattices [3], transformations of the DNA
double strand [4], and others.

A ubiquitous dynamical-lattice model is represented by
the discrete nonlinear Schrodinger equation [1,2,5] with
the cubic ( ,\/(3)) nonlinearity. It has been used to model a
variety of experimental settings, where it demonstrates the
formation and interactions of discrete solitons and local-
ized vortices [6], lattice modulational instability, buildup
of the Peierls-Nabarro (PN) barrier impeding the motion of
solitons, diffraction management, etc. [7].

Substantial activity has also been aimed at lattices with
the quadratic (y'?) nonlinearity, which was originally in-
troduced to describe the Fermi-resonance interface modes
in multilayered systems based on organic crystals [8]. The
interest in y? lattices was recently boosted by the experi-
mental realization of discrete y'? solitons in nonlinear
optics [9]. A variety of topics have been studied in this
context both theoretically and experimentally, including
the formation of 1D and 2D solitons [10,11] (see also
reviews [12]), modulational instability in waveguide ar-
rays [13], few-site lattices [14], )((2) photonic crystals [15],
cavity solitons [16], and multicolor localized modes [17].

A fundamental difference of y'® continua from their
x® counterparts is that they feature no collapse in 2D and
3D cases [18], which paves the way to create stable 2D [19]
and 3D [20] quadratic solitons. On the other hand, due to

the presence of collapse in 2D and 3D y'¥ continua, lattice

solitons may only exist with a norm exceeding a certain
threshold [21], and are stable only if strongly localized (on
a few lattice sites). Therefore, stable discrete 2D and 3D
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x® solitons are strongly pinned to the lattice and cannot
move across it [22].

The absence of the trend to the catastrophic self-
compression in the 2D y® medium suggests that the
corresponding lattice solitons may be broad and therefore
mobile, being loosely bound to the lattice. The aim of this
work is to investigate the mobility of 1D and, especially,
2D solitons in y@ lattices. Besides potential applications
to photonics, the topic presents a fundamental interest,
revealing a family of mobile solitons in 2D lattices. Thus
far, the only example of mobility was provided by solitons
in a 2D lattice with saturable nonlinearity [22] (the
Vinetskii-Kukhtarev model [23], in which the mobility of
1D solitons was examined in Ref. [24]). Experimentally,
the 1D mobility of strongly anisotropic 2D gap solitons
was observed in a continuous photorefractive medium with
a square photonic lattice [25].

In this work, we identify parametric regions admitting
persistent motion of y'? solitons on 1D and 2D lattices,
and we investigate the anisotropy of the 2D soliton mobil-
ity. First, we introduce the model and discuss its PN barrier.
Then, systematic numerical results for the soliton mobility
in 1D and 2D lattices are reported.

Theoretical setup.—Following Ref. [11], we introduce a
system of equations for the fundamental-frequency (FF)
and second-harmonic (SH) waves, ¢, ,(¢) and ¢,, ,(7), on
the 2D lattice:

d
ialpm,n = _(C1A2¢m,n + lﬂrfz,n‘ﬁm,n)’ (D

.d 1
lad)m,n = _§(C2A2¢m,n + lr//%n,n + kd)m,n)J (2)

where AZ'vbm,n = ¢n1+1,n + wm—l,n + ¢m,n+l + ¢’m,n—l -
4i¢,.,, C, and C, are the (real) FF and SH lattice-coupling
constants, and k is the mismatch parameter. Equations (1)
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and (2) conserve the Hamiltonian,
H = ch(lwm+l,n - lr//m,nlz + |l//m,n+1 - l//m,nlz)
m,n

+ (C2/2)(|¢m+l,n - ¢m,n|2 + |¢m,n+1 - ¢m,n|2)
- (1/2)[¢3nn¢31,n + (w;kn,n)zd)m,n + k¢%n,n]r (3)

and the norm (Manley-Rowe invariant, i.e., total power),
I= Zm,n(llpm,nlz + 2|¢mn|2)

Stationary solutions of Egs. (1) and (2) are of the form
{{//m,n(t)y ¢m,n(t)} = {e_iwtum,n’ €_2iwtvm,n}’ with
v,, , real for fundamental solitons, and complex for other
patterns, such as vortices [11]. To set the discrete solitons
in motion, one must overcome the PN barrier, i.c., the
energy difference between static solitons which are cen-
tered on a lattice site and between sites. This can be defined
in two ways: either as the difference in the Hamiltonian (3)
for fixed norm (see, e.g., [24] and references therein), or,
according to Ref. [26], as the difference in the free energy,
F = H — wl, between intersite and on-site solutions, for a
fixed w.

A lengthy asymptotic analysis demonstrates that for
large values of the coupling constants (quasicontinuum
regime) the dominant dependence of the above-defined
free-energy difference W, on C = C; = C, (in the most
relevant case of equal FF and SH coupling constants) is of
the form W, = aC exp(—bC), where a and b are constants
for given w and k (we do not present a formal derivation of
this rather general formula, which is, instead, supported
below by comparison with numerical results). Then, in the
1D case, the effective PN potential for the coordinate ¢ of
the soliton’s center of mass is F = (W /2) cos(27£). In the
2D case, the PN potential may be approximated fairly
accurately by the combination of the two 1D terms, F =
(Wo/2)[cos(27€) + cos(27rm)]. A sufficiently strong kick
applied to the discrete soliton should allow it to overcome
the pinning PN barrier and set in motion through the lattice.
Accordingly, we begin the presentation of our simulations
by identifying the dependence of the effective barrier on
the lattice discreteness, and then examine the strength of
the kick necessary to overcome it and initiate persistent
motion of the soliton.

Numerical Results.—We examine the dependence of the
free-energy difference on the lattice discreteness, for a
typical set of parameter values, e.g., w = —0.25, k =
0.25. The free-energy barrier, AF, between intersite and
on-site positions of the 2D discrete soliton (shifted in one
lattice direction) is shown as a function of the coupling
strength C in the left panel of Fig. 1. The dashed line shows
the best fit of this dependence to the above asymptotic
formula, showing that the latter remains quantitatively
correct even for very discrete lattices, up to C = 0.3. The
right panel additionally verifies the accuracy of the formula
for the 2D PN potential, by displaying the free-energy
difference AF for the soliton placed intersite in both
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FIG. 1 (color online). The left panel shows the dependence on
the coupling strength of the free-energy difference AF between
intersite and on-site positions of the 2D discrete soliton (shifted
in one lattice direction), for w = —0.25 and k = 0.25. The
dashed line is the best fit, for large C, to the analytical prediction,
aCexp(—bC), see text. The right panel shows the comparison of
AF and 2AF for the soliton set intersite, respectively, in both
directions (solid line), and in one direction only (dashed line).

directions (i.e., along the diagonal) with twice the value
of AF for the respective shift in one direction only.

We now turn to the motion of the soliton. In both 1D
and 2D cases, we used lattices with periodic boundary
conditions to allow indefinitely long progressive mo-
tion. Dynamical simulations were initialized by ap-
plication of a kick to the numerically exact stationary

solitons, {uff,))n vff,))n i.e., considering {¥,, ., dpnt =

expli(S/Cy5)(mcosf + n sinﬁ)]{uﬁ,?,),,, vﬁ,?,)n}, where S and
6 determine the size and (in the 2D case) orientation of the
kick.

Examples of persistent motion and destruction of the 1D
lattice soliton, induced by a moderate and strong kick,
respectively, are displayed in Fig. 2. Systematic results,
produced by variation of S and C = C; = C,, are summa-
rized in Fig. 3. Destruction of the soliton was registered if it
eventually lost more than 30% of the initial norm. For the
coupling strengths corresponding to Fig. 2, the initial kicks
of different sizes S give rise to two outcomes only: stable
motion or destruction. However, for weaker couplings
(stronger discreteness), ‘‘localization’ is also possible:
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FIG. 2 (color online). |2

and

Space-time contour plots of [¢,,,,
|,,..|* for the FF and SH fields (top and bottom panels) in the
1D lattice with periodic boundary conditions, for C; = C, = 1,
o = —0.25, k = 0.25. The kick, § = 0.4 or 3.0 (left and right
parts), sets the soliton in stable motion, or destroys it, respec-
tively.
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FIG. 3 (color online). A diagram in the plane of the coupling
strength, C = C| = C,, and kick size, S, showing outcomes of
kicking the quiescent soliton in the 1D (left panel) and 2D (right
panel) lattice, for @ = —0.25 and k = 0.25. Solid lines show
exponential fitting curves, § = 6.02389./C, exp(—13.7684C,)
and § = 2.56619,/C; exp(—9.0043C,), for the 1D and 2D cases,
respectively. In the 2D case, triangles and rectangles denote the
numerical results for & = 20° and 6 = 45°, respectively. (local-
ization means immobility).

for S taken below a (lower) critical value, Sﬁ?), the kicked
soliton survives without acquiring any velocity. This oc-
curs if the kinetic energy, Ey;, ~ S, initially imparted to
the soliton, is insufficient to overcome the PN barrier. The
dependence of W, on C = C; = C, and its comparison to
§? explain the shape of the separatrix of the localization
area in Fig. 3. Thus, general features of both the 1D and 2D
situation are summarized as follows: (i) for § < S&?) , the
soliton remains quiescent; (ii) for Sc(r)) <S5 <SS, it sets in
persistent motion; (iii) for § > S, it is destroyed.

The 2D setting is especially interesting for two reasons.
First, as noted above, in the 2D case the mobility is a
nontrivial feature, which is impossible in the ,\/(3) lattices;
second, it is interesting to study the anisotropy of the
mobility, i.e., its dependence on the orientation of the
kick relative to the lattice. Figure 4 shows two examples
of stable motion: one along the lattice diagonal, and, to the
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either stable motion, or destruction, at S > S... Analysis

of numerical data confirms that SE?) exponentially decays
with the increase of C; = C, (cf. Fig. 3), in accordance
with the analytical asymptotic dependence of W,. On the
other hand, the dependences of S, and velocity on 6 shown
in Fig. 5 demonstrate that the propagation direction along
the diagonal is easiest to sustain the motion on the square
lattice, as S, is largest in this direction, and the motion is
fastest for given S <S.. Of course, the lattice soliton
cannot move straight along the diagonal (since lattice sites
are not directly coupled along the diagonals); actually, it
periodically splits along the two lattice directions and
recombines at the site located diagonally across from the
splitting point.

We have also examined the situation with C, < C; and
obtained similar results, but with larger S(C(r)), which may
also be explained by the asymptotic expression for W,
which depends exponentially on C, in this case. In the
special case of C, = 0 (no lattice coupling in the SH field),
moving solitons cannot be generated, which is easy to
understand, too: with C, =0, Eq. (2) yields v, , =
—u2, /(4w + k), and the substitution of this in Eq. (1)
makes the model equivalent to one with the cubic nonline-
arity, where traveling 2D discrete solitons do not exist.

Conclusions.—We have examined the mobility of soli-
tary waves in 1D and 2D lattices with the quadratic non-
linearity. The solitons can easily be set in stable motion in
1D, and they remain mobile on the 2D lattice, contrary to
what is the case for the cubic nonlinearity. In the 2D case,

FIG. 4 (color online). Motion of the
discrete soliton in a 2D periodic lattice
(same parameters as in Fig. 2). Depicted
are the cases of propagation along the
diagonal (45°, top panels) and at an
arbitrarily chosen direction (20°, bottom
panels). In the left panels, dashed and
solid lines show coordinates of the sol-
iton’s center, ¢ and 7, as functions of
time (in the case of the diagonal motion,
& = m). In the right panels, snapshots of
the moving soliton in the FF (top) and
SH (bottom) fields at r = 0, 30, 50 are
shown.

FF
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FIG. 5. Characteristics of the soliton motion in the 2D periodic
lattice, for C; = C, = 1, k = 0.25, v = —0.25. The top panel
shows the velocity versus strength S of the kick directed along
the lattice bonds (at angle 6 = 0); the vertical dashed line
indicates the value S, beyond which the soliton is destroyed.
The bottom left panel depicts S, as a function of orientation 6 of
the initial kick. For given S = 0.4, the velocity is shown vs 6 in
the bottom right corner.

we have demonstrated the possibility of motion of solitons
in an arbitrary direction, the motion along the diagonal
being easiest. An explanation of key features, such as the
border between the pinned and mobile states, and the
anisotropy of the mobility, can be provided by the consid-
eration of the effective Peierls-Nabarro potential.

It may be interesting to extend the analysis to other 1D
and, especially, 2D models, where mobile solitons may be
expected, such as systems with competing nonlinearities
(the cubic-quintic model [27] or the Salerno model with
competing on-site and intersite cubic terms [28]). A full
proof of the existence of traveling lattice solitons is a
challenging computational [26] and mathematical [29]
problem.

P.G.K. and R.C.G. gratefully support the support of
NSF and B. A. M. was supported in a part by ISF and GIF.
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