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The statistical properties of self-replicating spots in the reaction-diffusion Gray-Scott model are
analyzed. In the chaotic regime of the system, the spots that dominate the spatiotemporal chaos grow
and divide in two or decay into the background randomly and continuously. The rates at which the spots
are created and decay are observed to be linearly dependent on the number of spots in the system. We
derive a probabilistic description of the spot dynamics based on the statistical independence of spots and
thus propose a characterization of the spatiotemporal chaos dominated by replicating spots.
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Spatiotemporal chaos (STC) refers to the state where a
high-dimensional dynamical system is temporally chaotic
and spatially irregular [1]. Although pattern formation in
nonequilibrium systems has been extensively investigated
in the past decades, STC is as yet not well understood and
is the focus of current experimental and theoretical re-
search. One of the central challenges in this field is the
origin of STC. Several mechanisms for the transition to
these states have been proposed, such as the Ruelle-Takens
scenario [2], sequences of bifurcations via quasiperiodicity
or temporal chaos [3], instabilities of spiral wave patterns
[4], and others.

Another important problem in the study of STC is to find
the characterizations of the disordered states. Beyond the
simple description of correlation functions, macroscopic
approaches that describe STC on large spatial and temporal
scales have been derived for a few systems [5,6]. For many
STCs that arise in a wide range of pattern-forming systems,
the dynamics of a pattern is dominated by defects, such as
vortices or dislocations, which nucleate and annihilate
perpetually. The defects are a feature of the disordered
state, and the dynamics of defects can be used to character-
ize the spatiotemporally chaotic state [7–13]. Description
of a stochastic master equation and the probability distri-
bution for the number of defects have been derived. The
complex STCs were thus represented by the relatively
simple dynamics of defects.

In this Letter, we consider the STC of self-replicating
spots in reaction-diffusion systems where a pattern is
dominated by spots [14]. The self-replicating spot [15–
23] is a phenomenon visually similar to biological cell
division. The spots consist of localized regions where the
concentrations of reactants differ from the background
field. They grow to a critical size and split in two, which
can then grow and divide again. On the other hand, the
spots interact with each other; they can decay to the
background when they feel too crowded. The asymptotic
pattern is characterized by perpetual and indefinite creation
and annihilation of spots, a typical spatiotemporally cha-
otic behavior [See Fig. 1(a)]. It has been found that such

replication of spots is generic in a broad class of reaction-
diffusion systems and was observed in well-controlled
experiments [15,21] and studied in the Gray-Scott model
[16–20], the four-species reaction-diffusion model for the
ferrocyanide-iodate-sulfate reaction [21], the FitzHugh-
Nagumo model [22], and others [23].

Our goal here is to characterize the STC of self-
replicating spots by looking into the statistical properties
of the spots that dominate the chaotic pattern in the
reaction-diffusion Gray-Scott model. We find that the rates
at which the spots are created and decay are linearly de-
pendent on the number of spots in the system. We derive a
probabilistic description for the spot dynamics based on
observed creation and annihilation rates, and we present
theoretical results that agree with our numerical findings on
the base of the assumption of statistical independence of
spots.

Model and methodology.—Patterns of replicating spots
have been studied most often with the Gray-Scott model
[24]. The kinetic reaction-diffusion equations for the
model can be written as [14]

 

@u
@t
� �uv2 � F�1� u� �Dur

2u; (1)

 

@v
@t
� uv2 � �F� k�v�Dvr

2v; (2)

where u and v represent the concentration of speciesU and
V, respectively. F and k are control parameters. The system
has a trivial homogeneous state (u � 1, v � 0, referred to
as the red state), which is always linearly stable. Two
additional steady states can be created through a saddle-
node bifurcation, the stable one of which is referred to as
the blue state and can lose it stability through Hopf and
Turing bifurcations.

The self-replicating pattern in the Gray-Scott model was
first described by Pearson [14], who also reported a rich
variety of other spatiotemporal patterns by making small
changes in the control parameters F and k. Dependent on
the parameters, the replicating spots can form steady states
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where the spots consist of a hexagonal pattern, or typically
result in chaotic states in which the spots compete for
territory. The spot multiplication process [16,18,20] and
pattern formation [25] in this system have been studied in
detail. The transition to STC has also been investigated
from the global bifurcation viewpoint [26]. Instead, here
we are interested in the statistical dynamics of STC of self-
replicating spots in the chaotic regime.

The numerical simulation of the system evolution is
performed by direct integration of Eqs. (1) and (2) with a
finite-difference algorithm. Periodic boundary conditions
have been applied. The spatial domain consists of a 200�
200 lattice with mesh space h � 0:01. The initial condi-
tions employed throughout this paper consist of a localized
square pulse of size 20� 20 that perturbs the homogene-
ous red state. We fix the diffusion coefficients to the values
Du � 2:0� 10�5, Dv � 1:0� 10�5. Before data are ana-
lyzed, the system has been integrated for 40 000 time steps
(step dt � 0:1) in order for the transient to die out.

In F� k space, the parameter values we use fall in the
STC region of self-replicating spots, i.e., pattern " in
Pearson’s paper [14]. The region locates lower than but
very close to the lower branch of the saddle-node bifurca-
tion curve Fsn��1�8k�

����������������
1�16k
p

�=8. Slightly over the
lower branch, Turing instability of the blue state arises in a
narrow region stretching along the saddle-node curve.
When Du=Dv � 2, this region falls almost entirely within
the region where the system also exhibits a Hopf instability
[25].

Results.—A snapshot from the evolution of a spatiotem-
poral chaos of self-replicating spots is illustrated in
Fig. 1(a). The map is coded with the gray scales of the
concentration of u field. Spots in the pattern are localized
regions of low u value and high v value, which are gen-
erated from the trivial steady state, i.e., the background
with u � 1:0 and v � 0:0. They are readily recognized
numerically by determining the locations of minima in the
u field and/or maxima in the v field. The spots can undergo
division or decay, as demonstrated in Fig. 1(a) with black
or white arrows. In the chaotic regime, they are constantly
created by spot multiplications, move fast, and decay into
the background. The processes occur continuously and

indefinitely, and the spatiotemporal pattern looks like a
chaotic ‘‘soup’’ of spots. Notice that in this system, spots
do not merge together because they are repulsive.

For the irregular patterns, we calculated the spatial
autocorrelation function C��r� � h�u�r; t� � hui	�
�u�r� �r; t� � hui	ir;t, where hir;t signifies the average
over the space and time, and hui is the average of u field.
Figure 1(b) depicts C��r� for the patterns obtained with
different parameters. The correlations decay exponentially
with short characteristic length scales, demonstrating spa-
tial incoherence in the system. In Fig. 1(c), the number n of
spots in the pattern of Fig. 1(a) is shown as a function of
time. The fluctuations in n�t� provide further evidence of
the existence of STC mediated by spots. From the time
series n�t�, a mean value hni of 85.9 is obtained with a
standard deviation of � � 6:2 for the fluctuations. Figure 2
depicts the probability distribution function for the number
of spots n obtained from simulations.

As the spots compete with each other, the creation and
decay rates are dependent on the total number of spots in
the system. Figure 3 shows the rates under parameters F �
0:016 and k � 0:056. They are obtained by counting the
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FIG. 2. Probability distribution function for the number of
spots computed from time series n�t� (squares) and from theory
of Eq. (6) (solid line). Parameters as in Fig. 1(a). The dashed line
is the Poisson distribution. For the inset, F � 0:014, k � 0:053,
simulated with a 100� 100 lattice.

FIG. 1. (a) Spatiotemporal chaos of self-replicating spots in the Gray-Scott model. In the gray-scale snapshot, black represents the
lowest value of u. Spot splitting is indicated by black arrows; white arrows are for spots that are being annihilated. (b) Spatial
correlation functions calculated from chaotic patterns of self-replicating spots. (c) The number of spots as a function of time. F �
0:016, k � 0:056 for (a) and (c).
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current number of spots at time t and those being created
and vanishing in a subsequent short time interval and are
then averaged over long time of evolution. We observe that
both the creation and annihilation rates are linearly depen-
dent on the total number n of spots in the system. The
multiplication rate decreases while the decay rate increases
as a function of the number of spots. For different parame-
ters, the linear dependence of the rates on n also hold. The
observed creation rate ���n� and annihilation rate ���n�
are therefore approximately given by

 ���n� � c0 � c1n; (3)

 ���n� � a0 � a1n: (4)

For the rates in Fig. 3, these values are found to be c0 �
1:007, c1 � �0:0077, a0 � 0:162, a1 � 0:0021. The co-
efficients depend on the parameters F and k. As we explore
the F� k parameter space where the system exhibits the
disordered states of spots, the relation of Eqs. (3) and (4)
always holds. For instance, under parameter values F �
0:009, k � 0:05, the line of creation rate has a positive
slope (c1 > 0) and both rates grow linearly with the num-
ber of spots (a1 > 0). Whatever parameter values in the
regime of spot chaos are taken, the multiplication rate is
always higher than the annihilation rate when the spot
density is low and background space is available, while
the latter surpasses the former when there is insufficient
space with too many spots in the system. From these
observations, we conclude that the linear dependence of
�� and �� on n�t� is characteristic of the STC of self-
replicating spots.

To establish a quantitative connection between the ob-
served creation or annihilation rates and the spot number
distribution function, we consider a simple probabilistic
description for spot dynamics that is an extension of the
model for defect-mediated turbulence [7]. As the average
distance between the spots is larger than the correlation
length in the pattern, it can be assumed that the spots in the

system are statistically independent entities, and the spot
dynamics follows a discrete birth-death Markov stochastic
process with the transition rates ���n� and ���n�. In the
statistical stationary state of detailed balance, the proba-
bility distribution function P�n� of finding a number of n
spots in the system satisfies the master equation of the
simple recursion,

 P�n� �
���n� 1�

���n�
P�n� 1�: (5)

Based on the observed creation and annihilation rates of
Eqs. (3) and (4), the above recursive relation leads to the
following distribution function:

 P�n� � P�0�
Yj�n�1

j�0

c0 � c1j
a0 � a1�j� 1�

; (6)

where P�0� is determined by the normalization condition.
Figure 2 illustrates the probability distribution function

P�n� of Eq. (6) with the coefficients determined from the
creation and annihilation rates of Fig. 3. It matches closely
the distribution derived directly from numerical
simulations.

The above probabilistic description is based on the
assumption that the spots are statistically independent;
i.e., the spots in the chaotic patterns are uncorrelated.
This assumption is supported by the power spectrum cal-
culated from the time series n�t� of spots. If the fluctuations
in n�t� arise from independent random events, the power
spectrum S�f� � j 1

T

R
T
0 dtn�t� exp��i2�ft	j2 would have

a Lorentzian shape [11], i.e, S�f� / f�� with � � 2:0.
Figure 4 shows that for not too small frequencies, the
power spectrums for spots have Lorentzian shape with
the values of exponent � very close to 2.0 for different
parameters. This indicates that the spots are uncorrelated
and statistically independent. The result we find here for
patterns of self-replicating spots is in contrast with pre-
vious findings for defect-mediated turbulence in the
Willamowski-Rössler model and in a recent experiment
of catalytic surface reaction [11] where the power spectrum
has a non-Lorentzian shape and the defects exhibit short-
range correlations.

Conclusion and Discussion.—For spatiotemporally cha-
otic systems that are dominated by special entities in the
pattern, such as defects in defect-mediated turbulence or
replicating spots of disordered states, it is possible to
obtain a reduced description for the complex dynamics
by building low dimensional phenomenological models
for the objects that feature the disordered pattern. In this
Letter, we have analyzed the statistical properties of self-
replicating spots that dominate the spatiotemporal chaos in
the Gray-Scott model. The multiplication and annihilation
rates of the spots as functions of the total spots in the
system have been obtained. We found that as there are
sufficient space and low number of spots in the system, the
multiplication rate is faster than that of the annihilation,
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FIG. 3. The creation rate (black dots) and annihilation rate
(open circles) as functions of the number of spots in the pattern.
Parameters: F � 0:016, k � 0:056.
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while the former is surpassed by the latter as the system
contains a sufficiently high number of spots. Both rates
exhibit linear dependence on the number of spots in the
pattern. The processes of spot multiplication and decay are
found to be statistically independent, and the spot dynam-
ics can be described as a discrete Markovian random walk.
Based on the observed linear dependence of the rates on n,
we derived a theoretical probability distribution function
for the number of spots that agrees well with numerical
simulations. The disordered states of replicating spots,
which have been found to be common in a broad class of
reaction-diffusion systems, are therefore characterized
with the reduced description of spots.

The spot dynamics of spot-mediated STC in the Gray-
Scott model we considered here is similar to the defect
dynamics in defect-mediated turbulence [7–13] that have
been previously studied theoretically and experimentally.
Both the defects and spots have been assumed to follow
stochastic random walks. Because of different instability
mechanisms of these disordered states, the detailed dynam-
ics of spots and defect is distinct. The main difference
comes from the creation and decay rates. For defects of
vortices [7] or dislocations [9], the nucleation of defect is
independent of n. The annihilation rate can be best ap-
proximated with a rate proportional to n2 [7] or follows a
combined quadratic and linear dependence on n [13]. For
penta-hepta defect chaos [10], the defect is no longer
created constantly but follows a quadratic polynomial
rate c0 � c1n� c2n

2. The defects decay also with the
rate a1n� a2n2. For chaos of replicating spots that we
reported here, both rates of replicating and decay of spots
depend linearly on n (see Fig. 3). Accordingly, the distri-
bution function for replicating spots is different from those
of defects. Besides these, defects have been reported to
typically have short-range correlations [8,11,13], while the
spots in the Gray-Scott arose from independent random
events as indicated by the Lorentzian shape power
spectrum.
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FIG. 4. Power spectrum S�f� of the time series of spot number
n�t� vs the frequency f for different parameters. The dashed line
is to guide the eye and scales as f�� with � � 2:0.
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