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Color Screening Melts Quarkonium
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We calculate quarkonium spectral functions in a quark-gluon plasma using a potential model based on
full QCD lattice calculations of the free energy of a static quark-antiquark pair. We estimate the binding
energy and the thermal width of different quarkonium states. The estimated upper limit for the
dissociation temperatures is considerably lower than the ones suggested in the recent literature.
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One of the most important features of the quark-gluon
plasma is the screening of static chromo-electric fields [1].
It has been argued that screening above the deconfinement
temperature 7. is strong enough to lead to the dissolution
of the J /i state, which can then signal quark-gluon plasma
formation in heavy ion collisions [2]. The fact that the
J/i-suppression pattern observed in SPS and RHIC ex-
periments is still not understood [3], serves as a motivation
for this work. In particular, our aim is to relate quarkonium
suppression to deconfinement and color screening.

Because of the large quark mass m = m j, > AQCD, the
velocity v of heavy quarks in the bound state is small, and
the binding effects in quarkonia at zero temperature can be
understood in terms of nonrelativistic potential models [4].
More recently, the potential has been derived from QCD
using a sequence of effective field theories: Nonrelativistic
QCD (NRQCD), an effective theory where all modes
above the scale m are integrated out, and potential
NRQCD, an effective theory in which all modes above
the scale mv are integrated out [5].

Based on the success of the potential model at zero
temperature, and on the idea that color screening implies
modification of the interquark forces, potential models
have been used to try to understand quarkonium properties
at finite 7 [2,6]. To discuss properties and dissolution of
quarkonium states at finite temperature spectral functions
have to be considered. Using lattice QCD, charmonium
correlators have been calculated, and the corresponding
spectral functions have been extracted using the maximum
entropy method (MEM) [7-11]. The MEM at zero tem-
perature can reconstruct the basic features of the spectral
functions: the ground state, the excited states, and the
continuum [11]. At finite temperature, however, the extrac-
tion of the spectral functions becomes difficult, because the
length of the Euclidean time is limited by the inverse
temperature.

In a recent paper [12] we calculated the spectral function
using a potential model for the nonrelativistic Green’s
function. This detailed analysis shows that spectral func-
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tions calculated in a potential model combined with per-
turbative QCD can describe the available lattice data on
quarkonium correlators at zero and at finite temperature in
QCD with no light quarks [12]. Charmonium states were
found to dissolve at temperatures significantly lower than
quoted in lattice QCD studies. In the present work we
extend our analysis to the case of real QCD with one
strange quark and two light quarks. Furthermore, using
lattice results on color screening we derive upper bounds
for the dissociation temperatures of various quarkonium
states in the quark-gluon plasma which are considerably
lower than previous estimates.

In the energy domain of the resonances and near the
continuum threshold the spectral functions are calculated
from the nonrelativistic Green’s functions as [12]
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for S-wave, and P-wave quarkonia, respectively. Here £ =
w — 2m, and the number of colors is N, = 3. The non-
relativistic Green’s function satisfies the Schrodinger equa-
tion [—L1V?+V(r) - EIG™(% ¥, E) = 83(r — r'). The
numerical method for solving this equation is presented
in [12]. At large energies, away from the threshold, the
nonrelativistic treatment is clearly not applicable. The
spectral function in this domain, however, can be calcu-
lated using perturbation theory [12].

To calculate G""(7, ¥, E) we need to specify the potential
V(r) in the Schrodinger equation. A Coulomb plus linear
form, phenomenologically successful in describing quar-
konia spectrum at T = 0, also gives a good parametrization
of the lattice data on the static quark-antiquark potential for
0.1 fm < r <1 fm. Only at distances r < 0.1 fm, not rele-
vant for quarkonia studies, the effect of the running cou-
pling is important [13]. At large distances, ryeq = 1.1 fm,
the linear growth of the potential stops due to string break-
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ing [14]. At high temperatures we expect that the effective
range of the potential will be reduced and the interactions
are exponentially screened at large distances. At suffi-
ciently short distances, on the other hand, the interaction
between the heavy quark and antiquark is temperature
independent [13]. Motivated by the above, we use the
following parametrization for the potential

-2+ o, F < rpea(T),

/ 3
Voo(T) - @e—p«(ﬂr’ r=> rmed(T)~ ©)

V(r, T) = {
Following the recent 2 + 1 flavor lattice QCD analysis
[15], we fix @ =0.385 and o = 1.263/r3, with ry =
0.469 fm being the Sommer-scale determined in [16]. At
zero temperature we choose r,.q = 1.1 fm and screening
mass of u = 0.4 GeV. The later is motivated by the fact
that the heavy-light meson pair is in the isosinglet channel.
This choice then corresponds to V,, =~ 1.2 GeV. The po-
tential is shown in Fig. 1. For calculations of the charmo-
nium spectral functions we have included in the potential
also a relativistic spin-independent correction, estimated to
be —0.80/(m?r) [17]. The zero temperature potential with
the above choice of the parameters gives a fairly good
description of the quarkonium spectrum.

At finite temperature we fix the parameters in (3) utiliz-
ing the information available from lattice QCD on the free
energy of a static heavy quark-antiquark pair. Free energy
calculations are done in pure gluodynamics, 3-flavor and 2-
flavor QCD [13,18,19], and preliminary results are also
available in the physically relevant case of one heavy
strange quark and two light quarks [15] (quark masses
correspond to pion mass of about 200 MeV). These calcu-
lations show that the free energy is temperature indepen-
dent for distances r < 0.4 fm/(T/T,), while for distances
rT > 0.8 it is exponentially screened, with a screening

mass estimated to be w(T)= 1.4(1),/1 + N;/6g(T)T

[13,19]. Here g(T) is the 2-loop MS gauge coupling at
scale 27rT. It was found also that at infinite separation of
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FIG. 1 (color online). The two choices of the potential (de-
noted as set 1 and set 2) used in our analysis for 1.27, and 1.67T..

We also show the free energy of static quark-antiquark pair
calculated in 2 + 1 flavor QCD on the lattice [15].

the heavy quark and antiquark the free energy approaches a
constant F,(T). At high temperatures perturbation theory
tells us that F(T) behaves like —a2?T [20] (lattice
calculations confirm this behavior [13,15,18,19]). For T >
T. we assume that F(T) = a/T — bT, where a and b are
temperature-independent constants. The first term can be
viewed as the contribution from a nonperturbative dimen-
sion two gluon-condensate [21], while the second term is
the perturbative entropy contribution. This parametrization
successfully describes the lattice data on F.(T) in pure
gauge theory [21], and we checked that it works very well
for T > 1.1T, also in 2 + 1 flavor QCD. In our numerical
analysis we use the value 7. = 0.192 GeV determined in
[22]. Although the 2 + 1 flavor lattice data on the free
energy of static quark-antiquark used here were obtained
on coarse lattices with temporal extent N, = 4, discretiza-
tion errors in this quantity are small [18].

It is important to note, that since it contains an entropy
contribution, the free energy itself is not the potential. It
can, nevertheless, provide some constraints on the parame-
ters of (3). In particular, the discussion above implies
0.4 fm/(T/T,) < rpeq < 0.8/T, and due to the negative
entropy contribution, V,(T) > F(T). We use Vo, = a/T

and u = 1.4,/1 + N;/6g(T)T. The values of o/(T) are

determined in [19]. The above described choice for V.,
o' and w, together with a requirement for the smoothness
of the potential, predetermines the value of r.4. This turns
out to be close to 0.4 fm/(T/T.), the value determined in
lattice simulations. This physically motivated potential,
labeled as set 1, is shown for different temperatures in
Fig. 1. For comparison we display also the lattice data on
the free energies. Denoted as set 2 in Fig. 1 an alternative
choice, an upper bound on the finite temperature potential
is shown: When fixing r,,.q = 0.8/T the smoothness of the
potential determines the value of V(7). It turns out that
this value is close to Uy (T), the internal energy of the
isolated static quark. We know that U, (T) provides an
upper bound on the possible value of V. (T), because it
contains all possible interactions of heavy quark with the
medium. The values of w(7T) and o/(T) were fixed as in
set 1. The numerical results on the spectral functions are
mostly determined by the value of V., (T) and are insensi-
tive to other details of the potential (see discussion in [12]
also on the stability of the numerical solution).

In what follows we present numerical results for these
two choices of the potential, and derive an upper bound for
the dissociation temperatures. In Fig. 2 we show the spec-
tral functions above the deconfinement temperature. The
S-wave charmonium spectral function at 7 = 1.17,. exhib-
its a resonance peak with very small binding energy of
about 0.014 GeV. Here, and in what follows, we define the
binding energy as the distance between the peak position
and the continuum threshold, Ey, = 2m., + Voo — M, M
being the resonance mass. Above 1.17, the charmonium
spectral functions show no resonancelike structures, mean-
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FIG. 2 (color online). S-wave charmonium (upper panel) and
bottomonium (lower panel) spectral functions at different tem-
peratures.

ing that all charmonium states are dissolved. Even though
there are no resonances, the spectral function is strongly
enhanced compared to the noninteracting case. This is also
illustrated in Fig. 2. We would like to point out, that this
threshold enhancement compensates for the dissociation of
the states, and thus dramatic changes seen in the spectral
function are not reflected in the correlation function (for a
detailed discussion see [12]). Also, the strong enhancement
in the threshold region is an indication that the heavy quark
and antiquark remain correlated. In the case of bottomo-
nium we see only the ground state above deconfinement,
all other states are dissolved. Furthermore, as Fig. 2 shows,
there is no significant change in the peak position of the
ground state up to 27,. Even though seemingly the reso-
nance structure persists to temperatures even higher than
this, the binding energy of the state is significantly reduced.

When the binding energy of a resonance drops below the
temperature the state is weakly bound, and thermal fluctu-
ations can destroy it by transferring energy and exciting the
quark antiquark pair into the continuum. The rate of this
excitation, or equivalently the width of the quarkonium
states, is determined by the binding energy [23]. Therefore,
in order to provide an upper bound on the dissociation
temperature we need to estimate an upper bound for the
binding energy. To do this, we calculate quarkonium spec-
tral functions for the set 2 potential, providing the maxi-
mum possible binding still consistent with the lattice
results on screening. We find that with this choice of the
potential the S-wave charmonium spectral function has
resonancelike structures up to ~1.67,.. Furthermore, we
also see resonancelike structures in the bottomonium spec-

tral functions corresponding to the 1P and 25 states. In the
upper panel of Fig. 3 we show the corresponding binding
energies of the different quarkonium states. Let us note,
that in the past quarkonium widths at finite temperature
have been calculated using perturbative QCD and the
Boltzmann-approximation, assuming an ideal quark-gluon
plasma. See [24] for a recent analysis. For quarkonium
sizes realized in nature the validity of the perturbative
calculations of the quarkonium-gluon cross section is
doubtful. Furthermore, the Boltzmann-approximation
breaks down if the binding energy is smaller than the
temperature. In [23] the quarkonium dissociation rate due
to thermal activation into the continuum has been esti-
mated nonperturbatively, using a resonance plus a contin-
uum model for the spectral function. The thermal
dissociation rate I'(T) has a particularly simple form in
two limits [23]: The limit of large and small binding,
respectively:

(LT

F(T) _ Me_Ebin/T, Ebin > T, (4)
37

4 T
I(T) = zﬂm, Eyin < T. %)

Here L is the size of the spatial region of the potential,
given by the distance from the average quarkonium radius
to the top of the potential, i.e., L = ryeq — (r*)!/2. From
the top panel of Fig. 3 it is clear that for 7 > 1.17, all
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FIG. 3 (color online). An upper limit of the binding energy of
different quarkonium states (top) and the quarkonium width
(bottom). The open squares show the width of the 1S bottomo-
nium state multiplied by six for better visibility, which has been
calculated in the limit of small binding.
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TABLE I. Upper bound on dissociation temperatures.
State Xe 4 J/ Y’ Xb Y
Tgis =T. =T. 1.27T. 1.2T. 1.3T, 2T,

quarkonium states have binding energy smaller than the
temperature, with the exception of the Y(1S) state. Their
width can thus be estimated using (5). The results are
shown in the lower panel of Fig. 3. Note that all of these
states have widths larger than 200 MeV, and are therefore
likely to be dissociated in the plasma. In the case of the
Y(1S) for T < 1.6T, we use (4) to estimate the width,
which is found to be smaller than 40 MeV. This is in fairly
good agreement with the perturbative estimate of [24]. For
temperatures 7 > 1.6T, even the 1§ bottomonium is in the
regime of small binding, and its width becomes very large
by 2.6T, (see Fig. 3). Note that uncertainty in the value of
U in the lattice calculations, indicated as a band in Fig. 1,
leads to uncertainty in the binding energy estimate of about
10%. When the thermal width is significantly larger than
the binding energy the resonance structure seen in our
calculation will not be observable in reality. We define
the dissociation temperature as the smallest temperature
where no resonance structure can be seen in the spectral
function. The upper limit for the dissociation temperatures
of the quarkonium states we determine by posing the
conservative quantitative condition I'(T) = 2E,;,(T). The
corresponding dissociation temperatures are summarized
in Table I. A less conservative criterion 1I'(T) = E;, (T)
would reduce the dissociation temperature by roughly 10%.

In conclusion, we determined quarkonia spectral func-
tions in the quark-gluon plasma using a potential model
with two choices for the potential, both motivated by lattice
QCD results on the free energy of a static quark-antiquark
pair. We found that, due to color screening, for the first
chosen potential most quarkonia states, except the Y, dis-
solve at temperatures close to that of deconfinement. For
the most extreme potential which is still compatible with
lattice data, resonance structure in the spectral functions
exists up to higher temperatures. This potential provides an
upper limit on the binding energy. Using the binding
energy we calculate the width of various states, and give
upper bounds on their dissociation temperatures which are
significantly lower than previous estimates. As such, the
model proposed in [25], where J /i suppression is due only
to melting of the y. and ' states, cannot explain the
nuclear modification factor R4, measured in the experi-
ments since color screening dissolves the J/¢. On the
other hand, the enhancement of the spectral function near
the threshold shows that the heavy quarks and antiquarks
remain strongly correlated in the plasma even though they
do not form a bound state. This correlation could lead to
the regeneration of some quarkonium states when the
plasma converts to hadronic matter increasing R, values

above expectations from screening alone. The quark and
antiquark may even reform into a higher excited state. For
a quantitative description of R4, a model calculation of
regeneration effects is needed. More precise calculations of
the spectral function and detailed lattice calculations of the
static quark-antiquark correlators will also be helpful.
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