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Friedmann Equations and Thermodynamics of Apparent Horizons
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With the help of a masslike function which has a dimension of energy and is equal to the Misner-Sharp
mass at the apparent horizon, we show that the first law of thermodynamics of the apparent horizon dE =
T,dS, can be derived from the Friedmann equation in various theories of gravity, including the Einstein,
Lovelock, nonlinear, and scalar-tensor theories. This result strongly suggests that the relationship between
the first law of thermodynamics of the apparent horizon and the Friedmann equation is not just a simple
coincidence, but rather a more profound physical connection.
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The derivation of the thermodynamic laws of black
holes from the classical Einstein equation suggests a
deep connection between gravitation and thermodynamics
[1]. The discovery of the quantum Hawking radiation [2]
and black hole entropy which is proportional to the area of
the event horizon of the black hole [3] further supports this
connection and the thermodynamic (physical) interpreta-
tion of geometric quantities. The interesting relation be-
tween thermodynamics and gravitation became manifest
when Jacobson derived the Einstein equation from the first
law of thermodynamics by assuming the proportionality of
the entropy and the horizon area for all local acceleration
horizons [4].

In cosmology, like in black holes, for the cosmological
model with a cosmological constant (called de Sitter
space), there also exist Hawking temperature and entropy
associated with the cosmological event horizon, and ther-
modynamic laws of the cosmological event horizon [5]. In
de Sitter space, the event horizon coincides with the ap-
parent horizon (AH). For more general cosmological mod-
els, the event horizon may not exist, but the AH always
exists, so it is possible to have Hawking temperature and
entropy associated with the AH. The connection between
the first law of thermodynamics of the AH and the
Friedmann equation was shown in [6]. Now, we must ask
if this interesting relation between gravitation and thermo-
dynamics exists in more general theories of gravity, like
Brans-Dicke (BD) theory and nonlinear gravitational the-
ory. In [7], the gravitational field equations for the non-
linear theory of gravity were derived from the first law of
thermodynamics by adding some nonequilibrium correc-
tions. In this Letter, we show that equilibrium thermody-
namics indeed exists for more general theories of gravity,
provided that a new masslike function is introduced.

To show our claim, we begin by reviewing the thermo-
dynamics of the AH with the use of the Misner-Sharp (MS)
mass in Einstein and BD theories of gravity, whereby we
find the equilibrium thermodynamics fails to hold for the
BD theory. The Einstein equation can be rewritten as the
mass formulas with the help of the MS mass M. The
energy flow through the AH dFE is related with the MS
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mass. Since the MS mass M, the Hawking temperature T,
and the entropy S, of the AH are geometric quantities, the
first law of thermodynamics of the AH can be thought of as
a geometric relation. Therefore, we expect the geometric
relation to hold in other gravitational theory if it holds in
Einstein theory. To achieve this, we replace the MS mass
M by a masslike function M which is equal to the MS
mass M at the AH; we then show that the connection
between the first law of thermodynamics of the AH and the
gravitational equations holds in scalar-tensor and nonlinear
theories of gravity without adding nonequilibrium
correction.

For a spherically symmetric space-time with the metric
ds® = g.pdx?dx” + PdQ?, using the MS mass M =
#(1 — g7 ,7,)/2G [8], the a — b components of the
Einstein equation give the mass formulas [9,10]

M, =47 (TE — 85T)F,, (1)

where the unit spherical metric is given by dQ)? = d6? +
sin0d@?* and T = T¢. From now on, all the indices are
raised and lowered by the metric g,, and the covariant
derivative is with respect to g,,. The AH is

Fo=ary = (H>+ k/a?)~1/2, (2)

At the AH, the MS mass M = 4775 p/3, which can be
interpreted as the total energy inside the AH. Now we use
the (approximate) generator k% = (1, —Hr) of the AH,
which is null at the horizon, to project the mass formulas.
Since k“7 , = 0, at the AH we find that

— dE = —k"V,Mdt = d(7))/G = T,dS,,  (3)

where the horizon temperature is T4 = 1/(27F4) and the
horizon entropy is S4 = 774 /G. On the other hand, using
the mass formulas (1), we get the energy flow through the
AH

— dE = —k“V,Mdt = —4mPT0F k*dt
= 47 H(p + p)dt. 4

Therefore, the Friedmann equation gives rise to the first
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law of thermodynamics —dE = T,dS, of the AH. From
the above definitions, we see that the relation —dE =
T,dS, is a geometrical relation which depends on the
only assumption of the Robertson-Walker metric. To con-
nect the geometrical quantity dE with the energy flow
through the AH, we need to use the Friedmann equations.
Therefore, for any gravitational theory, if we can write the
gravitational field equation as G, = 87GT,, and regard
the right-hand side as the effective energy-momentum
tensor, then we find the energy flow through the AH,
whereby we derive the first law of thermodynamics of
the AH —dE = T,dS,. For example, in the Jordan frame
of the scalar-tensor theory of gravity, if we take the right-
hand side of gravitational field equation as the total effec-
tive energy-momentum tensor, then the Friedmann equa-
tion can be regarded as a thermodynamic identity at the AH
[11].

The connection between the first law of thermodynamics
and the Friedmann equation at the AH was also found for
gravity with Gauss-Bonnet term, the Lovelock theory of
gravity [6], and the braneworld cosmology [12]. For a
general static spherically symmetric and stationary axi-
symmetric space-times, it was shown that the Einstein
equation at the horizon gives rise to the first law of ther-
modynamics [13,14]. For the Lovelock gravity, the inter-
pretation of gravitational field equation as a thermo-
dynamic identity was proposed in [15].

Alternatively, the mass formulas (1) can be written as the
so-called unified firstlaw V, M = AW, + WV _,V [16,17],
where W = (p — p)/2 and ¥, = T57, + WF,. Project-
ing the unified first law along the direction tangent to the
AH (or trapping horizon in Hayward’s terminology), the
first law of thermodynamics dM = TdS + WdV can be
derived, where the horizon temperature and entropy are
given, respectively, by T = [7/(47) and S = A/(4G).
Based on this result, the connection between the
Friedmann equation and the first law of thermodynamics
of the AH with the work term was widely discussed for
Einstein gravity, Lovelock’s gravity, the scalar-tensor the-
ory of gravity, the nonlinear theory of gravity, and the
braneworld scenario [18-23].

This connection between the Friedmann equation and
the first law of thermodynamics of the AH suggests the
unique role of the AH in thermodynamics of cosmology.
This may be used to probe the property of dark energy
[10,24]. For example, if we assume that the temperature of
the dark components is T = bT, then use the relation T =
(p+ p)/s = (p+ p)a®/o, we find that the total energy
density of the dark components is given by

ap\6 ap\3

p=pprt Po(;) + ZJM(;) ) %)

where py = 02b>Ga, /(67), px = 3A/(87G) is the en-
ergy density of the cosmological constant, ¢ is the constant
comoving entropy density, and s is the physical entropy
density. The right-hand side of the above equation contains

three different terms, which correspond to, respectively,
the cosmological constant, the stiff fluid, and the pressure-
less matter. However, the coefficients of these terms are not
all independent. In fact, the current observational con-
straints tell us that the stiff fluid is negligibly small, for
which we must assume p, < 1. This in turn implies that
the pressureless matter given by the last term is also
negligibly small. So the pressureless matter in the last
term cannot account for dark matter. In other words, the
dark matter must not be in equilibrium with the AH.
For the BD theory [25]

— 9,00,
L= —%[¢R+ a)g“”iﬂi ¢:|, (6)

the BD scalar ¢ plays the role of the gravitational constant.
The MS mass is [26]

M =20 - 7,7, ™

At the AH, M = ¢F7,/2. The horizon entropy is S, =
w74 b, so we get

T,dS, = %FAqu + ddri,. (8)
On the other hand, we have
—dE = —kV ,Mdt = —%FAd¢ + ddiy. 9

Comparing Egs. (8) with (9), we find that the equilibrium
thermodynamics —dE = T,dS, fails to hold for the BD
theory. Similarly, it can be shown that —dE = T,dS, does
not hold in the nonlinear and scalar-tensor theories of
gravity. It is exactly because of this that it was argued
nonequilibrium treatment might be needed.

As mentioned above, the mass, temperature, and entropy
of the AH are all geometrical quantities, and the first law of
thermodynamics of the AH can be regarded as a geometric
relation. Now, the important question is whether a mass
function exists that serves as the bridge between the
Friedmann equation and the first law of thermodynamics
of the AH without nonequilibrium correction. In the fol-
lowing, we show that the answer is affirmative. It has
exactly the dimension of energy and is equal to the MS
mass at the AH. To distinguish it with the MS mass, we call
it the masslike function.

To show our above claim, let us write the @ — b compo-
nents of the Einstein equation as

M, = —4aP2(T — 85T)F ), + 7, (10)

where the masslike function M is defined as
F ..
M= ﬁ(l + gUF 7). (11)

At the AH, g*F,7, = 0 and the masslike function M =
74/2G, which is equal to the MS mass. For the Robertson-
Walker metric we have g,, = —1, g,, = a*>/(1 — kr?), and
7 = ar. Then, the mass formulas (10) yield the Friedmann
equations
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k 87G
H? + =3 P (12)
7} 47G
£ == o+ 3p). (13)

a

Combining Egs. (12) and (13), we can derive the energy
conservation law p + 3H(p + p) = 0. Thus, the mass for-
mulas (10) give rise to the full set of the cosmological
equations.

At the AH, the masslike function M = 477'?3x p/3, which
is the total energy inside the AH. The energy flow is

dE = k9V, Mdt = d(7,)/G = T,dS,.  (14)

On the other hand, using the mass formulas (10), we get the
energy flow through the AH

dE = k*V Mdt = —47PTEF ,k4dt = 4w H(p + p)dt.

5)

Therefore, the Friedmann equation gives rise to the first
law of thermodynamics dE = T,4dS, of the AH. While this
result is the same as that obtained by using the MS mass,
we show below that the equilibrium thermodynamics can
be derived for BD and nonlinear gravities by using our
newly defined masslike function, although it cannot be
done by using the MS mass, as shown above.
For the BD theory, the masslike function is defined as

M= Tr(l + gF 7). (16)
At the AH, it reduces to the MS mass, M = M = ¢7,/2.

The a — b components of the gravitational field equation
become

M, = =47 (TS — 85T)F ), + 277?37";" +(dF) 4
+2
= T3g T babsT T~ T

1

=3
PGP — PO, — 6,06 ()

4¢

Applying to the Robertson-Walker metric, the above equa-
tion gives the Friedmann equations

k 8w wd')z_ ¢
T e gy 09
i__ wd 1.6 14
P d)(P 3p) - 35 2H¢ 2 b (19)

The mass formulas (17) or Eqs. (18) and (19) are not
sufficient to describe the full dynamics of the BD cosmol-
ogy. In the BD cosmology, we also need the equation of
motion of the BD scalar field ¢ in addition to Egs. (18) and
(19), which is given by

8
3+ 2w

é+3Hd = (p —3p). (20)

From the definition of the masslike function (16), at the AH
we find
dE = M ,k4dt = iF dp + pdiy = T,dSy, (1)

where the entropy now is S, = 74 ¢. Using the mass
formulas (17), we get the energy flow through the AH

8 h2
M’ak“=3+2 H[(w+2)p+a)p]+—rf‘HE
— 2R H?$ + 3 F b, (22)

where we used Eq. (20) in deriving the above equation.
From Egs. (18)—(20), the right-hand side of Eq. (22) can be
written as 7, + ¢F,. Therefore, we see that in BD
theory, the first law of thermodynamics of the AH dE =
T,dS, can be derived from the Friedmann equation.

The thermodynamic prescription can be easily extended
to general scalar-tensor theory of gravity with the
Lagrangian

L =f($p)R — 38" ,¢d,4 — V(). (23)

In this case, f(¢) plays the role of the gravitational con-
stant, so now we can define the masslike function as

= (P71 + g™F .7 ) (24)

and the horizon entropy as S, = 774 f(¢). Then, using
these definitions, we can show that dE = M k*dt =
T,dSy.

For the nonlinear theory of gravity f(R), we can define
the masslike function as

M = 1f'(R)F(1 + g™F ,F ), (25)

and the horizon entropy S, = @75 f'(R), where f/(R) =
df/dR. Again, it is easy to show that dE = M ,k°dt =
T,dS 4. Therefore, the thermodynamics of the AH holds for
both the general scalar-tensor theory of gravity and the
nonlinear theory of gravity.

Now we show how to derive the first law of thermody-
namics of the AH from the Friedmann equation in the
Lovelock gravity. The Lovelock Lagrangian is L =
Sy cnly [27], where

_ nSMivi ,U«nVn a By,
L,=27"6 RM1V1

. P B
alﬁl R/‘Lnljn'

Using the Robertson-Walker metric, we obtain the
Friedmann equations in N + 1 dimensional space-time

m ki
=1 a

167G
NN =1) P (26)

and
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87G

- m(ﬂ +p), (27)

ie-i<H2+f>i_l<H—£>=
; ! a? a?
where ¢y =co/[NN—-1)], ¢é =1, and ¢ =
Ci H§Q3(N + 1 — j) for i > 1. The masslike function can
now be defined as

NN — DOy & T A\
=_- N . i +
M 6nG [_Zlc,[Zr (H 2) :|

a

where () is the volume of unit N-dimensional sphere and
the last equality is evaluated at the AH. Note that although
the geometric form is different, the masslike function at the
AH has the same value as that in Einstein theory of gravity,
which is the total energy inside the AH. The entropy of the
AH is

S _ Ny & N1

AT4G EN-2i+1
From Egs. (28) and (29), we can easily check that dE =
M ,k*dt = T,dS, holds with the horizon temperature
T, = 1/(27@F,). Using the Friedmann Egs. (26) and (27),
we find the energy flow through the AH is dE =
NQyH# (p + p), which is the same as that in Einstein’s
gravity.

By properly defining the masslike function in each
theory of gravity, we find that the corresponding
Friedmann equations can be written in the form dE =
T,dS, of the first law of thermodynamics at the AH. In
other words, the thermodynamic description of the gravi-
tational dynamics is manifest through the mass formulas.
Therefore, the gravitational dynamics can be considered as
the thermodynamic identity dE = T,4dS,. This is true for a
variety of theories of gravity, including the Einstein,
Lovelock, nonlinear, and scalar-tensor theories. This non-
trivial connection between the thermodynamics of the AH
and the Friedmann equation may represent a generic con-
nection, and it suggests the unique role that the AH can
play in the thermodynamics of cosmology. Such a thermo-
dynamic description of the AH can also be used to probe
other physical systems and properties, such as the nature of
dark energy and the thermodynamics of black holes in each
of these theories.

Finally, we would like to note that, although the newly
defined masslike function reduces to the MS mass at the
AH, the corresponding energy flows passing through the
horizon are different. This explains why our masslike
function gives rise to the first law of thermodynamics in
various theories of gravity, while the MS mass does not.
Because of the masslike function, the energy-momentum
tensor includes the contribution of gravitational fields such
as BD scalars, or curvature scalars in nonlinear theory of
gravity, in addition to the matter fields. This treatment

EFYFITY(29)

allows a reinterpretation of the nonequilibrium correction
introduced in [7]. The studies of other properties of the
newly defined masslike function, including the physical
and geometrical difference between the MS mass and it,
are important and should be reported somewhere else.

Y.G. Gong is supported by NNSFC under Grants
No. 10447008 and No. 10605042, CMEC under Grant
No. KJ060502, and SRF for ROCS, State Education
Ministry. A. Wang’s work was partially supported by a
VPR fund from Baylor University.

*gongyg @cqupt.edu.cn
Tanzhong_wang @baylor.edu
[1] J.M. Bardeen, B. Carter, and S. W. Hawking, Commun.
Math. Phys. 31, 161 (1973).
[2] S.W. Hawking, Commun. Math. Phys. 43, 199 (1975); 46,
206(E) (1976).
[3] J.D. Bekenstein, Phys. Rev. D 7, 2333 (1973).
[4] T. Jacobson, Phys. Rev. Lett. 75, 1260 (1995).
[5] G.W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2738
(1977).
[6] R.G. Cai and S.P. Kim, J. High Energy Phys. 02 (2005)
050.
[7] C. Eling, R. Guedens, and T. Jacobson, Phys. Rev. Lett.
96, 121301 (2006).
[8] C.M. Misner and D.H. Sharp, Phys. Rev. 136, B571
(1964).
[9] E. Poisson and W. Israel, Phys. Rev. D 41, 1796 (1990).
[10] Y.G. Gong, B. Wang, and A. Wang, J. Cosmol. Astropart.
Phys. 01 (2007) 024.
[11] M. Akbar and R. G. Cai, Phys. Lett. B 635, 7 (2006).
[12] X.-H. Ge, Phys. Lett. B 651, 49 (2007).
[13] T. Padmanabhan, Classical Quantum Gravity 19, 5387
(2002).
[14] D. Kothawala, S. Sarkar, and T. Padmanabhan, Phys. Lett.
B 652, 338 (2007).
[15] A. Paranjape, S. Sarkar, and T. Padmanabhan, Phys. Rev.
D 74, 104015 (2006).
[16] S.A. Hayward, Classical Quantum Gravity 15, 3147
(1998).
[17] S.A. Hayward, S. Mukohyama, and M.C. Ashworth,
Phys. Lett. A 256, 347 (1999).
[18] M. Akbar and R. G. Cai, Phys. Rev. D 75, 084003 (2007).
[19] R.G. Cai and L. M. Cao, Phys. Rev. D 75, 064008 (2007).
[20] R.G. Cai and L. M. Cao, Nucl. Phys. B785, 135 (2007).
[21] M. Akbar and R. G. Cai, Phys. Lett. B 648, 243 (2007).
[22] A. Sheykhi, B. Wang, and R. G. Cai, Nucl. Phys. B779, 1
(2007).
[23] A. Sheykhi, B. Wang, and R.G. Cai, Phys. Rev. D 76,
023515 (2007).
[24] Y.G. Gong, B. Wang, and A. Wang, Phys. Rev. D 75,
123516 (2007).
[25] C. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961).
[26] N. Sakai and J. D. Barrow, Classical Quantum Gravity 18,
4717 (2001).
[27] D. Lovelock, J. Math. Phys. (N.Y.) 12, 498 (1971).

211301-4



