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The flow and diffusion driven separation of initially adjacent liquid molecules is known as dispersion.
The primary physical quantity describing this process, the nonlocal dispersion tensor, provides insight
regarding both the spatial and temporal correlations of molecular velocity fluctuations in complex flows.
We here propose and demonstrate a nuclear magnetic resonance method for the measurement of this
tensor, validating its implementation for the case of cylindrical Couette flow, and demonstrating its
application to the study of fluid dispersion in a random bead pack.
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The migration apart of initially adjacent molecules,
under flow and diffusion, underpins processes as diverse
as cellular mitosis, blood perfusion in the brain, chroma-
tography, filtration, secondary oil recovery, ground water
remediation, catalysis, and the behavior of packed bed
reactors. The fundamental physics of this stochastic pro-
cess, known as dispersion, is governed by a subtle interplay
of diffusion across streamlines, flow bifurcation, and
holdup in stagnation flows or boundary layers. At high
Reynolds number (Re), flow turbulence provides an addi-
tional mechanism for dispersion. The physics of dispersion
resulting from diffusion across streamline flow was first
examined theoretically by Taylor [1]. Given the signifi-
cance of dispersion to so many physical processes of
interest [2,3], the body of both theory and experimental
work in fluid dispersion is considerable.

Because the physics of dispersion is governed by sto-
chastic processes, the spatiotemporal correlations present
in the velocity field provide crucial insight. In 1987 Koch
and Brady [4] defined a primary function informing on
these correlations, the nonlocal dispersion tensor, DNL.
This tensor describes the way in which the flow field is
correlated at points separated in space and time. Since
then, the tensor has been the subject of several theoretical
studies [5] but has so far proven elusive in measurement.
However, in 1996 Sternberg et al. [6] reported a one-
dimensional tracer measurement in which the effects of
nonlocal dispersion could be observed. The present Letter
reports on the first full measurement of DNL using a non-
invasive method in which all elements of the tensor are
observable. Our method is based on nuclear magnetic
resonance (NMR), in which special magnetic field gradient
pulses provide the necessary signal encoding to track the
velocities and spatial displacements of water molecules
labeled by their proton spin states. We demonstrate this
method experimentally for the particular spatiotemporal
example of cylindrical Couette flow, a case where DNL may
be exactly calculated. We then demonstrate the measure-
ment of an element of DNL for dispersive low Re flow in a
random bead pack.

We begin by defining a steady state Eulerian flow field
vE�r; t� � vE�r� and stationary Lagrangian flow ensemble
vL�t� with mean flow hvi. The fluctuating (zero mean) parts
of the velocities, uE�r� and uL�t�, are thus defined by

 v E�r� � uE�r� � hvi (1)

and

 v L�t� � uL�t� � hvi: (2)

The asymptotic dispersion tensor, D�, is described in
terms of the velocity autocorrelation function (VACF) of
the Lagrangian velocities by [4,7]

 D � � lim
t!1

sym
Z t

0
d�huL�0�uL���i; (3)

where h� � �i represents the Lagrangian ensemble average.
Note that D� may also be defined in Einsteinian terms
involving the dyadic of mean square displacements, �2�t�
by [7,8]

 D � � lim
t!1

1

2

d�2

dt
: (4)

The VACF link with the Eulerian field may be made via
a propagator P�rjr0; �� which describes the conditional
probability that a fluid element initially at r will migrate
to r0 at a later time �. P�rjr0; �� is governed by the micro-
scale advection-diffusion equation for the system. Given a
starting probability P�r�, the velocity autocorrelation func-
tion becomes

 huL�0�uL���i �
Z
dr0

Z
druE�r�P�r�P�rjr0; ��uE�r0�:

(5)

Clearly, just as the VACF contains details of the tem-
poral correlations otherwise buried in the asymptotic
dispersion tensor, so the expression

R
druE�r�P�r� �

P�rjr0; ��uE�r0� contains spatial correlation information
buried in the VACF. This integral has been termed by
Koch and Brady [4] the nonlocal dispersion tensor. It is a
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primary quantity of interest in any detailed description of
dispersive flow. Writing this quantity in terms of relative
displacements in time and space we have

 D NL�R;���
Z
druE�r�P�r�P�rjr�R;��uE�r�R� (6)

and

 huL�0�uL���i �
Z
dRDNL�R; �� (7)

and

 D � � lim
t!1

sym
Z t

0
d�

Z
dRDNL�R; ��: (8)

Nuclear magnetic resonance (NMR) provides a nearly
ideal tracer method for the measurement of dispersion in
that every single molecule is labeled noninvasively by its
local precession frequency in a nonuniform magnetic field
[9,10], the tracer being distributed uniformly within the
pore space. Of course, in principle, magnetic resonance
imaging (MRI) allows us to measure the complete Eulerian
velocity field, to some specified resolution, limited by the
intrinsic sensitivity of the NMR method. If, however, an
ensemble-averaged signal from the entire sample is ac-
quired, then resolution in time or with respect to molecular
displacements may be optimized [9]. Foremost among
such ensemble-averaged methods for the measurement of
molecular displacements is pulsed gradient spin echo nu-
clear magnetic resonance (PGSE NMR) [9,11]. This class
of experiment not only allows simple analysis of ensemble-
averaged mean-squared displacements over a well-defined
time interval [10], but has also been shown to be effective
in measuring the VACF for porous media flow [12].

The tensor DNL�R; �� should also be amenable to direct
measurement using PGSE NMR. One earlier such conjec-
ture, by Ding and Candela [13], indicated the need to
encode the NMR signal with information concerning the
displacement propagator. However, the measurement of
DNL requires that the experiment also be sensitive to
velocities separated in space and time.

The essentials of our spin echo method are shown in
Fig. 1 (technical details will be published separately).
Phase encoding events occur in two clusters. In the
first, an oppositely signed pair of weak gradient pulses,
separated by duration �, provide a phase shift
exp�iqu:	uE�r� � hvi
� arising from the instantaneous ve-
locity of the spin-bearing molecules, while another gra-
dient pulse applies a position-dependent phase shift
exp�iq:r�. This cluster is required to be applied over a
time scale shorter than the correlation time for velocity
fluctuations. After storing the magnetization for a period �,
a second encoding cluster is applied, such that the position-
encoding pulse has fixed opposite sign, while the sign of
the second qu pair may be chosen. Note that q � ��g is
the product of the gradient pulse amplitude g � rB, its
duration, �, and the magnetogyric ratio, �, and is conjugate
to the spin displacements R [9]. For convenience we
include the pulse separation � as an additional factor in
qu so that this wave vector is conjugate to the velocity. q
and qu are independently varied as separate dimensions of
the experiment.

The normalized signal acquired at the final spin echo
may be written

 E�q;�qu;�qu� �
Z
dR exp	iq � �R�


Z
dr� expf�iqu

� 	uE�r� � hvi
 � P�r�P�rjr�R; ��

� exp�iqu � 	uE�r�R� � hvi
g:

(9)

Let Fqf. . .g represent inverse Fourier transformation with
respect to q. Then

 

FqfE�q;qu;�qu�g�
Z
drexp	iqu:uE�r�
P�r�P�rjr�R;��

�exp	�iqu:uE�r�R�
: (10)

We will be concerned with the low qu limit of the ex-
periment where both qu pulses are applied collinearly, with
amplitude qu, but with independent sense. It is possible to
find a suitable superposition of experiments in which the
only second order terms surviving are q2

u
R
druE�r�P�r��

P�rjr�R; ��uE�r�R�. In particular, in limq2
u ! 0

FIG. 1. Schematic NMR pulse sequence and effective gra-
dients needed to measure DNL�R; ��. g and gu are stepped
independently.
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 4q2
uDNL�R; �� � FqfE�q; qu;�qu�g � FqfE�q;�qu; qu�g

� FqfE�q; qu; qu�g exp��i2quhvi�

� FqfE��q;�qu;�qu�g exp�i2quhvi�:

(11)

At first sight, the phase correction factor, exp�i2quhvi�,
appears to complicate the analysis. However, this factor is
only present when there is a net velocity in the chosen
direction and in any case can be easily obtained experi-
mentally from the phase shift associated with signal
E�0; qu; 0�.

A simple Couette cell provides an excellent system for
testing the NMR measurements of DNL�R; ��. Neglecting
diffusion, the velocity field is easy to calculate and is a
function of radial position r only. While there is no Taylor
dispersion, a Couette cell still shows interesting velocity
correlations when sensitive to only one velocity compo-
nent. The Couette cell is constructed from NMR tubes such
that, in accordance with Fig. 2, rout � 4:35 mm and rin �
3:25 mm and the inner tube was rotated with a frequency
of 4 Hz. To minimize diffusion effects the sample was
10 000 MW poly(dimethylsiloxane).

The velocity distribution in a Couette cell is given by

 v�r� �
Vmaxrin
r2

out � r
2
in

�
r2

out

r
� r

�
;

where Vmax is the fluid velocity at rin. The probability for
the fluid element at a particular r to move a distance X in a
time � can be expressed as

 P�X; r; t� �
2r

�r2
out � r

2
in��Xmax

�
1�

X2

X2
max

�
�1=2

;

where Xmax � 2 sinv�r��2r . However, since the measured
component, vx or vy, depends not only on r but also �
we need an expression that is a function of� also. The final
position of any fluid element is known from its initial
position; thus, the propagator can be written as a delta
function. For example, the component DNL

xx �X; �� can be
expressed as an integral over all starting position as
 

DNL
xx �X;���

Z 2�

0

Z rout

rin

v�r�cos���rcos�0 �rcos��X�

�v�r�cos�0drd�; (12)

where�0 � �� v�r��
r . Other components of the tensor can

be found similarly.
The experiments were performed using a Bruker Avance

400 MHz instrument equipped with three axis microimag-
ing gradients, the NMR signal being obtained from the
protons of poly(dimethylsiloxane) molecules. The method
is based on a bipolar [14] PGSE NMR sequence incorpo-
rating a stimulated echo ‘‘z-storage’’ interval [12].

Figure 2 shows the relevant velocities and axis system
for laminar flow in a Couette cell defined by rin and rout; in
the transverse plane we have 8 components of DNL�R; �� to
measure but due to symmetry only three independent
components remain DNL

xx �X; ��, DNL
xx �Y; ��, and DNL

xy �X; ��.
Examples of two of these components are shown for
various times in Fig. 3. The agreement between measure-
ment and calculation is excellent. Of particular note is how
the structure in the graphs change dramatically over rela-
tively short times (<1 revolution). As shown in Fig. 4 the

FIG. 2. Relevant coordinate system and velocities for flow in a
Couette cell. The velocity is a function of r only. Measurement
can be sensitive to either X or Y displacement and either x or y
components of velocity.

FIG. 3 (color online). DNL
xx �X; �� (�) and DNL

xx �Y; �� () mea-
sured in a Couette cell with rout � 4:35 mm and rin � 3:25 mm;
the inner tube was rotated with a frequency of 4 Hz. The solid
line shows the calculated results.
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integral over displacement for DNL
xx �Y; �� and DNL

xx �X; ��
give the same result, namely, the velocity autocorrelation
function at time �. However, the structure remains at long
time inDNL

xx �Y; ��whereasDNL
xx �X; �� tends to zero for all X

as � gets large.
Having shown that the nonlocal dispersion tensor may

be measured in simple Couette flow, we note that the
method is equally applicable to more complex flows. One
example, shown in Fig. 5, being flow through a porous
medium, in this case a randomly packed bed of 0.5 mm
spheres. We find that the oscillatory character seen in Fig. 5
agrees very well with calculations of this tensor element
in random bead backflow, using Lattice-Boltzmann mod-
eling along with Monte Carlo simulation of superposed
Brownian motion, an approach which has previously pro-
duced good agreement with measured velocity distribu-
tions [15]. OurDNL comparisons, over a range of times and
displacements, will be published elsewhere.

It is worth noting that all elements of DNL�R; �� are
accessible by NMR, simply by appropriate choice of the q
and qu gradients. Furthermore, NMR signal chemical
shifts may be used to distinguish different molecular spe-
cies in two-phase or multiphase flow. Nonlocal dispersion
tensor elements can be measured over a continuous range
of delay time, �, lower limited by the pulse cluster dura-
tion, and upper limited by the longitudinal spin relaxation
time. For liquids 1 ms * � * 1 s with other limits for
NMR of gases. Measurement of DNL�R; �� may help re-
solve the complex relationship between spatial and tem-
poral decay in velocity correlations, anomalous dispersion,
and the trend to asymptotic limits [16].
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FIG. 4 (color online). The calculated VACF in a Couette cell.
Overlaid is the measured VACF from the nonlocal dispersion
measurements.

FIG. 5 (color online). The measured DNL
zz �Z; �� for flow in a

beadpack of monosized spheres, dbead � 0:5 mm, Pe � 2000,
and a tube velocity of 8:1 mm s�1. A decorrelation lobe is
clearly visible for particles that have moved one bead diameter.
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