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We find a general formula for the distribution of time-averaged observables for systems modeled
according to the subdiffusive continuous time random walk. For Gaussian random walks coupled to a
thermal bath we recover ergodicity and Boltzmann’s statistics, while for the anomalous subdiffusive case a
weakly nonergodic statistical mechanical framework is constructed, which is based on Lévy’s generalized
central limit theorem. As an example we calculate the distribution of �X, the time average of the position of
the particle, for unbiased and uniformly biased particles, and show that �X exhibits large fluctuations
compared with the ensemble average hXi.
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A central pillar of statistical mechanics is the ergodic
hypothesis, which yields the equivalence of time and en-
semble averages in the limit of long measurement time t.
The Deborah number De � tp=t is the ratio of the time
scale of relaxation of the physical phenomenon under
observation tp and the time of observation [1]. For a system
to exhibit ergodic behavior, De must be small. Recently
there is much interest in weak ergodicity breaking [2],
where the Deborah number diverges [3–7]. Weakly non-
ergodic behavior is found in systems whose dynamics are
characterized by power law distributed sojourn times in
microstates of the system, in such a way that the averaged
waiting time is infinite (i.e., scale-free dynamics). Weak
ergodicity breaking was investigated for blinking quantum
dots [3], intermittent nonlinear maps generating subdiffu-
sion deterministically [5], numerical simulations of frac-
tional transport in a washboard potential [6], and in vivo
gene regulation by DNA-binding proteins [7]. On the
stochastic level, all these systems are modeled using the
well-known continuous time random walk (CTRW) ap-
proach or the corresponding fractional Fokker-Planck
equation [8–11]. Previously, nontrivial statistics of occu-
pation times for the CTRW model were found, and it is
well established that time averages remain random varia-
bles even in the limit of long measurement time [4]. The
main open theoretical challenge is to find the distribution
of time averages of physical observables. Such a general
theory, presented in this Letter, gives analytical estimates
for the statistical deviations of time averages from en-
semble averages. The theory replaces standard ergodic
statistical mechanics and is applicable for a wide class of
systems modeled using the CTRW or the related fractional
Fokker-Planck equation.

We consider the one-dimensional CTRW on a lattice,
with lattice points x � 1; . . . ; L. After waiting, the particle
can jump to one of its nearest neighbors; with probability
qx it jumps to its left, and with probability 1� qx to its
right. The waiting times on lattice cells are independent
identically distributed random variables with a common
probability density function (PDF)  ���. We consider the
widely applicable case [8–12], where the PDF of the wait-

ing times behaves like  ��� � A���1��=j�����jwith 0<
�< 1, A� > 0 when �! 1. In this case the average
waiting time is infinite and the Deborah number diverges.
Such waiting times yield anomalous subdiffusion and are
well investigated [8–12], in the context of chaotic dynam-
ics [13], geophysics [14], subdiffusive chemical reactions
which are important in biological applications [15], and
charge transport in amorphous semiconductors [16], to
name a few examples. The vast literature on the CTRW
deals mainly with ensemble averages of physical observ-
ables; for example, the behavior of the ensemble average of
the coordinate hXi was thoroughly investigated in many
physical situations. Here we investigate the time averages;
for example, we will find the distribution of �X.

Two types of CTRWs are considered. Thermal random
walks describe a physical situation where the particle is
coupled to a thermal heat bath with a temperature T [9,10].
In this case the jump probabilities qx satisfy usual detailed
balance conditions which relate qx with an external force
field F�x� acting on the system and temperature T [4,9,10].
When these conditions are imposed on the dynamics an
ensemble of noninteracting particles attains Boltzmann
equilibrium. A second class of random walks is nonthermal
and this situation may describe a system far from thermal
equilibrium. In this case the ensemble reaches an equilib-
rium which depends, of course, on the transition probabil-
ities qx (see details below). We will treat the nonergodicity
for both cases.

We introduce two types of measurements which we
identify with two different types of ensembles. In the first
the time average of a physical observable is made for a
fixed time t and t! 1. Repeating the experiment many
times, on an ensemble of trajectories, the distribution of the
time average is constructed. In the second approach the
number of jumps n the particle makes is fixed and n! 1.
So in the first ensemble, time is fixed and n fluctuates,
while the opposite situation describes the second case. The
fixed n ensemble is very convenient for calculations and
yields the same results as the fixed time approach.

We begin the analysis by considering the random walk
where n is the operational time. The probability of occupy-
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ing lattice site x after n jumps is given by the discrete time
master equation

 Px�n� 1� � qx�1Px�1�n� � �1� qx�1�Px�1�n�: (1)

After many jumps n! 1 an equilibrium Peq
x �n� 1� �

Peq
x �n� is obtained, which satisfies

 Peq
x � qx�1P

eq
x�1 � �1� qx�1�P

eq
x�1: (2)

Such an equilibrium does not depend on the initial condi-
tion of the system [17] and is reached provided that the
system is finite, and that qx � 1 qx � 0 besides on the
boundaries.

We consider the number ensemble where n is fixed. The
time tx spent by the particle in lattice cell x is called the
occupation time. The total measurement time is t �PL
x�1 tx. According to the CTRW model the time tx is a

sum of independent identically distributed sojourn times
with the common power law tailed PDF  ���. Let nx be the
number of sojourn times in cell x, which is clearly large
when n! 1. For the discrete time random walk described
by Eq. (1) we have nx=n � Peq

x . Hence according to gen-
eralized central limit theorem [18] the random variable tx
obeys Lévy statistics. Namely, the Laplace transform of the
random variable tx > 0 equals

 hexp��uxtx�i � exp��A�P
eq
x n�ux�

�� (3)

and the PDF of tx is the inverse Laplace transform ux ! tx
of Eq. (3) [18], denoted with l�;A�Peq

x n�tx�. For the ergodic
case, � � 1 in Eq. (3), the PDF of tx is ��tx � P

eq
x h�in�,

where h�i � A1 is the averaged waiting time, and since
nh�i ! t the PDF of tx is ��tx � P

eq
x t�, as expected.

The time average of a physical observable �O is

 

�O �
XL
x�1

�pxOx; (4)

where �px � tx=t is the occupation fraction and Ox is the
value of the physical observable when the particle is in
state x. For example, if the observable O is the position X
of the particle we have �X �

PL
x�1 x �px. For ergodic systems

and in the long time limit �px � Peq
x and then the time

average is equal to the ensemble average �O � hOi �

PL
x�1 P

eq
x Ox. When �< 1 the dynamics is nonergodic

and �O is a random variable, even in the long time limit.
To obtain the distribution of �O we find now the L

dimensional joint PDF of the occupation fractions
PL� �p1; . . . ; �px; . . . ; �pL� [19]. First note that the L occupa-
tion fractions �px are constrained according to the conditionPL
x�1 �px � 1, hence,

 PL� �p1; . . . ; �pL� � �
�

1�
XL
x�1

�px

�Z 1
0
g� �p1; . . . ; �pL�1; t�dt;

(5)

where g� �p1; . . . ; �pL�1; t� is the L dimensional joint PDF of
the random variables in its parenthesis. Since the occupa-
tion times tx are all independent we have
 

g� �p1; . . . ; �pL�1; t� �
@�t1; . . . ; tL�1; t�
@� �p1; . . . ; �pL�1; t�

��L�1
x�1 l�;A�Peq

x n�tx��

	 l�;A�Peq
L n

 
t�

XL�1

x�1

tx

!
: (6)

Calculating the Jacobian, using Eq. (5) and

 l�;A�Peq
x n�tx� �

1

�A�n�1=�
l�;Peq

x

�
tx

�A�n�1=�

�
(7)

we find

 PL� �p1; . . . ; �pL� � �
�
1�

XL
x�1

�px

�

	
Z 1

0
dyyL�1�L

x�1l�;Peq
x
�y �px�: (8)

This equation is the key for the calculation of the distribu-
tion of the time average �O, as we will soon show. The
multidimensional PDF of the occupation fractions Eq. (8)
is independent of the number of steps n and A�. A deriva-
tion of Eq. (8) using the fixed time ensemble will be
presented in a longer publication.

To proceed, we investigate the characteristic function

he�u
P

L
x�1

Oxtxit of the random variable
PL
x�1 Oxtx in

Laplace t! s space

 he�u
P

L
x�1

Oxtxis �
Z 1

0
e�sthe�u

P
L
x�1

Oxtxitdt: (9)

Using Eq. (8), we obtain

 

he�u
P

L
x�1

Oxtxis �
Z 1

0
dt
Z 1

0
dy
Z 1

0
dt1 
 
 


Z 1
0
dtLt�

�
t�

XL
x�1

tx

�
yL�1e�st�u

P
L
x�1

Oxtx�L
x�1l�;Peq

x
�ytx�

� �
d
ds

Z 1
0
dyyL�1

Z 1
0
dt1 
 
 


Z 1
0
dtLe

�s
P

L
x�1

tx�u
P

L
x�1

Oxtx�L
x�1l�;Peq

x
�ytx�

� �
d
ds

Z 1
0
dyyL�1�L

x�1

�exp��Peq
x �

s�Oxu
y �

��

y

�
: (10)

Solving the last integral we find the characteristic function
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 he�u
P

L
x�1

Oxtxis �

PL
x�1 P

eq
x �s�Oxu���1PL

x�1 P
eq
x �s�Oxu��

: (11)

Using inversion technique found in [20], we transform
Eq. (11), and we find the PDF of the time average �O

 f�� �O� � �
1

�
lim
�!0

Im

PL
x�1 P

eq
x � �O�Ox � i����1PL

x�1 P
eq
x � �O�Ox � i���

: (12)

This is our main result; it is a very general formula for the
distribution of time-averaged observables. When �! 1

 f��1�
�O� � �� �O� hOi� (13)

which is the expected ergodic behavior. The opposite limit
of �! 0, using

PL
x�1 P

eq
x � 1, gives

 lim
�!0

f�� �O� �
XL
x�1

Peq
x �� �O�Ox�: (14)

This makes perfect physical sense, since when �! 0 the
particle is localized for the whole duration of measurement
in a single cell. Note that our results can be easily gener-
alized to dimensions higher than one.

In many applications the continuum behavior of the
CTRW is important [10]. Taking the continuum limit of
Eq. (12) we find

 f�� �O� � �
1

�
lim
�!0

Im

R
L
0 dxP

eq�x�� �O�O�x� � i����1R
L
0 dxP

eq�x�� �O�O�x� � i���
:

(15)

Here Peq�x�dx is the equilibrium probability (in ensemble
sense) of finding the particle in (x, x� dx) and 0< x< L.
When the random walk is coupled to a thermal heat bath

with temperature T, in the presence of an external force
field F�x�, the equilibrium of the ensemble is described by
Boltzmann’s statistics [9,10]

 Peq�x� �
exp�� V�x�

kbT
�

Z
; (16)

where Z is the partition function and F�x� � �dV�x�=dx.
As mentioned, such an equilibrium is found for the CTRW
model when thermal detailed balance conditions are im-
posed on qx. Solving Eq. (15), we have

 f�� �O� �
sin��
�

	
I<��1�

�O�I>� � �O�� I>��1�
�O�I<� � �O�

�I>� � �O��2��I<� � �O��2� 2 cos��I>� � �O�I<� � �O�
;

(17)

where

 I<� � �O� �
Z

�O<O�x�
dxPeq�x�j �O�O�x�j� (18)

and similarly for I>� � �O�, I<��1�
�O�, and I>��1�

�O�. The inte-
gration domain in Eq. (18) is for x satisfying the condition
�O<O�x�.

As an example, consider a particle in a domain�L=2<
x< L=2 undergoing an unbiased random walk. This is a
free particle in the sense that no external field is acting on
it. The time average of the particle’s position �X is consid-
ered, and obviously for this case Peq�x� � 1=L for
�L=2< x< L=2. Using Eq. (17) we find the PDF of the
time-averaged position

 f�� �X� �
1

L

N��
1
4�

�X2

L2�
�

j 12�
�X
L j

2�1��� � j 1
2�

�X
L j

2�1��� � 2j 14� �
�X
L�

2j1�� cos��
; (19)

where N� � �1� �� sin��=����. When �! 1 we have the ergodic behavior �X � hXi � 0 while f�!0� �X� � 1=L for
j �Xj<L=2 which is the uniform distribution, reflecting the mentioned localization of the particle in space when �! 0. In
Fig. 1 comparisons between our analytical results and numerical simulations [21] of the CTRW process with a fixed
measurement time t show excellent agreement without fitting.

As a second example, consider a biased particle in the domain 0< x<1 and in a constant force field �F < 0.
Assuming the particle is in contact with a heat bath, with temperature T, Boltzmann’s equilibrium is reached for an
ensemble of particles, Peq�x� � exp��Fx=kbT�=Z. The PDF of �X is found using Eq. (17)

 f�� �X� �
sin��
�

F
kbT
	

����e~x~x�

�
R

~x
0 dye

yjyj��2 � �2�1� �� � 2��1� ��
R

~x
0 dye

yjyj� cos��
; (20)

where ~x � F �X=kbT. When �! 1 we find ergodicity
f1� �X� � �� �X� hXi� with hXi � kbT=F while in the oppo-
site limit �! 0, an exponential decay of the PDF of �X is
found: lim�!0f�� �X� � exp��F �X=kbT�=Z reflecting lo-
calization with a profile determined by the equilibrium
density of many noninteracting particles. These behaviors
are demonstrated in Fig. 2.

We now discuss briefly the meaning of weak ergodicity
breaking. In many situations in physics a system is non-

ergodic since its phase space is decomposed into regions of
phase space where the system once starting in one region
cannot explore the others. In this case time averages de-
pend strongly on the initial condition of the system and
there is no full exploration of phase space. In contrast, for
weak ergodicity breaking, the particle will visit each lattice
cell many times, no matter what its initial condition is.
Hence exploration of phase space is possible, and for this
reason we were able to construct in this Letter a general
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theory of nonergodic statistical mechanics which is not
sensitive to the initial conditions of the system. This has
several implications; for example, the joint PDF of occu-
pation fractions Eq. (8) and the PDF of time averages
Eqs. (15) and (17) are related to the population density
Peq�x�. Therefore, we may find a general relation between
fluctuations of time averages and fluctuations of ensemble
averages: using Eq. (11) the average of �O is h �Oi � hOi �R
L
0 O�x�P

eq�x�dx and

 h �O2i � h �Oi2 � �1� ���hO2i � hOi2� (21)

with hO2i �
R
L
0 O�x�

2Peq�x�dx. For the example of a par-
ticle in a uniform force field F, when the physical observ-
able is the position, we have h �Xi � kbT=F and
h �X2i � h �Xi2 � �1� ���kbT=F�2.

To summarize, we have obtained very general distribu-
tions of time averages of physical observables of weakly
nonergodic systems Eqs. (12) and (15). Unlike usual ergo-
dic statistical mechanics where the time averages are equal
to the ensemble averages, we find large fluctuations of time
averages. Because of the large number of applications of
the CTRW model, and the recent interest in weak ergodic-
ity breaking in dynamics of single particles, our theory is
likely to find its applications in many systems. The deep
relations between the stochastic CTRW and other models
of anomalous diffusion, e.g., the quenched trap model, and
deterministic dynamics, indicate that our nonergodic the-
ory might find further profound justification.
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FIG. 2 (color online). Same as Fig. 1 for biased CTRW: now
we show the PDF of �X=hXi. The theoretical curves based on
Eq. (20) perfectly agree with simulations (crosses) without
fitting. A transition between ergodic behavior for � � 1 (the
delta function) to localization behavior (solid curve �! 0)
where the PDF of �X decays exponentially is found.
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FIG. 1 (color online). The PDF of �X=L for unbiased CTRW,
simulations (crosses) versus theory (curves) Eq. (19). When � �
1 we find ergodic behavior and �X � hXi � 0 (i.e., the arrow
symbolizing a delta function). For � � 0:7 (the dotted dashed
curve) and � � 0:3 (the dashed curve) large fluctuations of time
averages are observed. When �! 0 the PDF of �X is uniform
reflecting localization of the particle (solid line).
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