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Bell’s theorem guarantees that no model based on local variables can reproduce quantum correlations.
Also, some models based on nonlocal variables, if subject to apparently ‘‘reasonable’’ constraints, may
fail to reproduce quantum physics. In this Letter, we introduce a family of inequalities, which use a finite
number of measurement settings, and which therefore allow testing Leggett’s nonlocal model versus
quantum physics. Our experimental data falsify Leggett’s model and are in agreement with quantum
predictions.
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Introduction.—Quantum physics provides a precise rule
to compute the probability that the measurement of A and
B performed on two physical systems in the state j�i will
lead to the outcomes (rA, rB):

 PQ�rA; rBjA;B� � h�jP rA � P rB j�i (1)

where P r is the projector on the subspace associated to the
measurement result r. For entangled states, this formula
predicts that the outcomes are correlated, irrespective of
the distance between the two measurement devices. A
natural explanation for correlations established at a dis-
tance is preestablished agreement: the two particles have
left the source with some common information �, called a
local variable (LV), that allows them to compute the out-
comes for each possible measurement; formally, rA �
fA�A; �� and rB � fB�B; ��. Satisfactory as it may seem
a priori, this model fails to reproduce all quantum corre-
lations: this is the celebrated result of John Bell [1], by now
tested in a very large number of experiments. The fact that
quantum correlations can be attributed neither to LV nor to
communication below the speed of light is referred to as
quantum nonlocality.

While nonlocality is a striking manifestation of quantum
entanglement, the essence of quantum physics may be
somewhere else [2]. For instance, nondeterminism is an-
other important feature of quantum physics, with no a
priori link with nonlocality. Generic theories featuring
both nondeterminism and nonlocality have been studied,
with several interesting achievements [3]; but it is not yet
clear what singles quantum physics out. In order to
progress in this direction, it is important to learn which
other alternative models are compatible with quantum
physics, and which are not. Bell’s theorem having ruled
out all possible LV models, we have to move on to models
based on nonlocal variables (NLV). The first example of
testable NLV model was the one by Suarez and Scarani [4],
falsified in a series of experiments a few years ago [5]. A
different such model was proposed more recently by
Leggett [6]. This model supposes that the source emits
product quantum states j�i � j�i with probability density

���;��, and enforces that the marginal probabilities must
be compatible with such states:

 P�rAjA� �
Z
d���;��h�jP rA j�i; (2)

 P�rBjB� �
Z
d���;��h�jP rB j�i: (3)

The correlations however must include some nonlocal
effect, otherwise this would be a (nondeterministic) LV
model and would already be ruled out by Bell’s theorem.
What Leggett showed is that the simple requirement of
consistency (i.e., no negative probabilities should appear at
any stage) constrains the possible correlations, even non-
local ones, to satisfy inequalities that are slightly but
clearly violated by quantum physics. A recent experiment
[7] demonstrated that state-of-the-art setups can detect this
violation in principle. However, their falsification of the
Leggett model is flawed by the need for additional assump-
tions because of the inequality they used [8], just as the
original one by Leggett, supposes that data are collected
from infinitely many measurement settings. In this Letter,
we present a family of inequalities, which allow testing
Leggett’s model against quantum physics with a finite
number of measurements. We show their experimental
violation by pairs of polarization-entangled photons. We
conclude with an overview of what has been learned and
what is still to be learned about NLV models.

Theory.—We restrict our theory to the case where the
quantum degree of freedom under study is a qubit. We
consider von Neumann measurements, that can be labeled
by unit vectors in the Poincaré sphere S: A! ~a and B!
~b; their outcomes will be written rA, rB 2 f�1;�1g. Pure
states of single particles can also be labeled by unit vectors
~u, ~v in S. Leggett’s model requires [9]

 P�rA; rBj ~a; ~b� �
Z
d�� ~u; ~v�P~u; ~v�rA; rBj ~a; ~b� (4)

with

PRL 99, 210407 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
23 NOVEMBER 2007

0031-9007=07=99(21)=210407(4) 210407-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.99.210407


 P~u; ~v�rA; rBj ~a; ~b� �
1

4
�1� rA ~a � ~u� rB ~b � ~v

� rArBC� ~u; ~v; ~a; ~b�	: (5)

The correlation coefficient C� ~u; ~v; ~a; ~b� is constrained only
by the requirement that (5) must define a probability
distribution over (rA, rB) for all choice of the measure-
ments ~a, ~b. Remarkably, this constraint is sufficient to
derive inequalities that can be violated by quantum physics
[6,8,10]. In the derivation of these inequalities, one defines
two orthogonal planes in the Poincaré sphere: �j � f ~a 2
Sj ~a � ~nj � 0g for ~nj 2 S and ~n1 � ~n2 � 0. For each unit
vector ~aj 2 �j, let us define ~a?j � ~nj 
 ~aj: the inequal-
ities are then obtained in terms of coefficients Ej��� which
are the average over all directions ~aj of the correlation
coefficient

 C� ~aj; ~bj� �
X
rA;rB

rArBP�rA; rBj ~aj; ~bj� (6)

with ~bj � �cos�� ~aj � �sin�� ~a?j [11]. This is a problematic
feature: such inequalities can be checked only by perform-
ing an infinite number of measurements or by adding the
assumption of rotational invariance of the correlation co-
efficients C� ~a; ~b�, as in [7]. It is thus natural to try and
replace the average over all possible settings with an
average on a discrete set. This is done by the following
estimate: let ~w and ~c be two unit vectors, and let RN be
the rotation by �

N around the axis orthogonal to ( ~w, ~c); then
it holds 1

N

PN�1
k�0 j�R

k
N ~c� � ~wj �

1
N cot �2N � uN [12]. Replac-

ing the full average by this discrete average in the other-
wise unchanged proofs [8,10], we obtain the following
family of inequalities:

 jEN1 � ~a1; ’� � E
N
1 � ~a1; 0�j � jE

N
2 � ~a2; ’� � E

N
2 � ~a2; 0�j

� LN� ~a1; ~a2; ’�  4� 2uN

��������sin
’
2

�������� (7)

where

 ENj � ~aj; �� �
1

N

XN�1

k�0

C� ~akj ; ~b
k
j� (8)

with ~bj � �cos�� ~aj � �sin�� ~a?j and the notation ~ck �
�RN;j�

k ~c (the �
N -rotation is along ~nj). This defines 2N and

4N settings for A and B, respectively.
For a pure singlet state, the quantum mechanical pre-

diction for LN� ~a1; ~a2; ’� is

 L���’� � 2�1� cos’� (9)

independent of N and of the choice of ~a1, ~a2 since the state
is rotationally invariant. The inequality for N � 1 cannot
be violated because u1 � 0 [13]. Already for N � 2, how-
ever, quantum physics violates the inequality; for N ! 1,
uN !

2
� , and one recovers the inequality derived in

Ref. [8]. The suitable range of difference angles ’ for

probing a violation of the inequalities (7) can be identified
from Fig. 1. The largest violation for an ideal singlet state
would occur for j sin’2 j �

uN
4 , i.e., at ’ � 14:4� for N � 2,

increasing with N up to ’ � 18:3� for N ! 1.
Experiment.—The experiment has to focus on different

issues than when usual Bell inequalities are tested. On one
hand, here there is no concern about spacelike separation,
as the model under test is based on NLV. On the other hand,
while the violation of a Bell inequality rules out LV models
irrespective of which settings are ultimately used, the in-
equalities (7) require a precise control of the measurement
settings [14]. We begin with a traditional parametric down
conversion source [16] for polarization-entangled photon
pairs with optimized collection geometry in single mode
optical fibers [17] (Fig. 2). Light from a continuous-wave
Ar-ion laser at 351 nm is pumping a 2 mm thick barium-
beta-borate crystal, cut for type-II parametric down con-
version to degenerate wavelengths of 702 nm with a
Gaussian spectral distribution of 5 nm (FWHM). We chose
a pump power of about 40 mW to ensure both single
frequency operation of the pump laser and to avoid satu-
ration effects in the photodetectors. Collection of down-
converted light into single mode optical fibers ensures a
reasonably high polarization entanglement to begin with.
In this configuration, we observed visibilities of polariza-
tion correlations of >98% both in the horizontal/vertical
(HV) and �45� linear basis for polarizing filters located
before the fibers. In order to avoid a modulation of the
collection efficiency due to wedge errors in the wave
plates, we placed subsequent polarization analyzing ele-
ments behind the fiber.

The projective polarization measurements for the differ-
ent settings of the two observers were carried out using
quarter wave plates, rotated by motorized stages by re-
spective angles �1;2, and absorptive polarization filters
rotated by angles �1;2 in a similar way with an accuracy
of 0.1 �. This combination allows us to project on arbitrary
elliptical polarization states. Finally, photodetection was
done with passively quenched silicon avalanche diodes,
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FIG. 1 (color online). Dependency of the combined correlation
parameters L�’� as a function of the separation angle ’ for the
quantum mechanical prediction for a pure singlet state, and
bounds for nonlocal variable models assuming an averaging
over various numbers of directions N.
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and photon pairs originating from a down conversion
process were identified by coincidence detection. The
compensator crystals (CC) and fiber birefringence com-
pensation (FPC) were adjusted such that we were able to
detect photon pairs in a singlet state.

After birefringence compensation of the optical fibers,
we observed the corresponding polarization correlations
between both arms with a visibility of 99:5� 0:2% in the
HV basis, 99:0� 0:2% in the �45� linear basis, and
98:2� 0:2% in the circular polarization basis. Typical
count rates were 10 100 s�1 and 8000 s�1 for single events
in both arms, and about 930 s�1 for coincidences for
orthogonal polarizer positions. We measured an accidental
coincidence rate using a delayed detector signal of 0:41�
0:07 s�1, corresponding to a time window of 5 ns.

The two orthogonal planes we used in the Poincaré
sphere included all the linear polarizations for one, and
HV linear and circular polarizations for the other. That
way, we intended to take advantage of the better polariza-
tion correlations in the ‘‘natural’’ basis HV for the down
conversion crystal. Each of the 4N correlation coefficients
C� ~a; ~b� in (7) and (8) was obtained from four settings of the
polarization filters via

 C� ~a; ~b� �
n~a; ~b � n� ~a;� ~b � n� ~a; ~b � n~a;� ~b
n ~a; ~b � n� ~a;� ~b � n� ~a; ~b � n~a;� ~b

(10)

from the four coincident counts n
� ~a;� ~b obtained for a fixed

integration time of T � 4 s each. For N � 2, 3, and 4, we
carried out the full generic set of 8, 12, and 16 setting

groups, respectively, with each ENj �0� containing a HV
analyzer setting.

The measured values of L corresponding to inequalities
for N � 2, 3, and 4 are shown in Fig. 3, together with the
corresponding bounds (7) and the quantum expectation for
a pure singlet state (9). The corresponding standard devia-
tions in the results were obtained through usual error
propagation assuming Poissonian counting statistics and
independent fluctuations on subsequent settings. For N �
2, we already observe a clear violation of the NLV bound;
the largest violation was obtained for N � 4 with about 17
standard deviations above the NLV bound. As expected,
the experimental violation increases with growing number
of averaging settings N. Selected combinations of (N, ’)
violating NLV bounds are summarized in Table I.

Our results are well-described assuming residual colored
noise in the singlet state preparation [18]. In the inset of
Fig. 3, we check that Lexpt�’� � Lexpt��’� as it should. If
this symmetry would be broken, e.g., by imprecise align-
ment of the polarizers, the violation may be overestimated,
whence the importance of consistency checks.
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FIG. 3 (color online). Experimental results for the observed
correlation parameters LN (dots), the quantum mechanical pre-
diction for a pure singlet state (curved lines, dashed lines), and
the bounds for the nonlocal variable models (almost straight
lines). In all cases, our experiment exceeds the NLV bounds for
appropriate difference angles ’.
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FIG. 2 (color online). Experimental setup. Polarization-
entangled photon pairs are generated in Barium-beta-borate
(BBO) by parametric down conversion of light from an Ar ion
pump laser (PL). After walk-off compensation (�=2, CC), down-
converted light is collected behind interference filters (IF) into
birefringence-compensated (FPC) single mode optical fibers
(SMF). Polarization measurements are carried out with a combi-
nation of a quarter wave plate (�=4) and polarization filters (PF)
in front of photon counting detectors D1;2. The measurement
basis for each arm (1,2) is chosen by rotation of the wave plate
and polarizing filter by angles �1;2, �1;2 accordingly.
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Overview and perspectives.—Let us now set this work in
a broader context. Assuming that the various loopholes in
experimental violations of Bell’s inequality are of techni-
cal and not of fundamental nature, any mechanism that
reproduces quantum correlations must be nonlocal. For
instance, a possible assumption is that the source produces
independent particles, which later exchange some kind of
‘‘communication’’ (which cannot be used to send classical
information). Because this communication would need to
travel faster than light, its speed would be frame depen-
dent. The model could have a preferred frame (‘‘quantum
ether’’), in which case signaling could be defined consis-
tently [19]; or a frame defined by the measuring devices, in
which case the model would depart from quantum predic-
tions when the devices are set in relative motion [4,5].
There are also NLV models that do reproduce quantum
predictions exactly. Explicit examples are Bohmian
Mechanics [20] and, for the case of two qubits, the
Toner-Bacon model [21]. Both are deterministic. Now, in
Bohmian mechanics, if the first particle to be measured is
A, then assumption (2) can be satisfied, but assumption (3)
cannot. This remark sheds clearer light on the Leggett
model, where both assumptions are enforced: the outcomes
of particle B are required to reproduce the expected local
statistics, but also to take nonlocal information into ac-
count to generate the correlations.

As a conclusion, it must be said that the broad goal
sketched in the introduction, namely, to pinpoint the es-
sence of quantum physics, has not been reached yet.
However, Leggett’s model and its conclusive experimental
falsification reported here have added a new piece of
information towards this goal.
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Note added.—Paterek et al. have independently worked
on the same line of thought, and have presented data that
violate the N � 2 inequality [15].
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[7] S. Gröblacher, T. Paterek, R. Kaltenbaek, Č. Brukner,
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