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We study theoretically a dilute gas of identical fermions interacting via a p-wave resonance. We show
that, depending on the microscopic physics, there are two distinct regimes of p-wave resonant superfluids,
which we term ‘‘weak’’ and ‘‘strong.’’ Although expected naively to form a paired superfluid, a strongly
resonant p-wave superfluid is in fact unstable toward the formation of a gas of fermionic trimers. We
examine this instability and estimate the lifetime of the p-wave molecules due to the collisional relaxation
into trimers. We discuss consequences for the experimental achievement of p-wave superfluids in both
weakly and strongly resonant regimes.
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Recently there has been considerable interest in trying to
create a p-wave resonant superfluid experimentally [1–3].
The Bardeen-Cooper-Schrieffer (BCS) and Bose-Einstein
condensation (BEC) regimes for such superfluids are not
just different aspects of the same phase, as they are for the
s-wave resonant superfluids, but rather are different
phases. Thus the tuning from the BCS to BEC regime
involves a phase transition [4,5] or sometimes a sequence
of phase transitions [6,7]. Such a transition can even be
topological in some cases [6,8–10]. If the superfluid is
confined to two dimensions, the BCS phase will be topo-
logical and will support vortices with non-Abelian excita-
tions [6,9].

In this Letter we show that resonant p-wave superfluids
must be classified as two distinct types, with weak or
strong Feshbach resonances (to be defined precisely later).
The existing mean field theory of p-wave superfluids,
worked out in [6,7,11], applies only to the case of weak
Feshbach resonances. However, as we shall establish be-
low, the p-wave resonance used in ongoing experiments on
40K [2,3] is a strong resonance. It is therefore important to
determine the properties of strongly resonant p-wave
superfluids.

The full theory of strong p-wave resonances is yet to be
constructed. Here we investigate an effect first noticed by
Y. Castin and collaborators [12]: in the regime of strong
p-wave resonances the fermions form trimer states with
angular momentum (spin) 1. Superficially similar to
Efimov states [13], these trimers are quite unusual. They
are very strongly bound, with a binding energy largely
independent of detuning from the resonance, as long as
the detuning is not too large (but dependent on the strength
of the resonance). Correspondingly, their size is of the
order of the closed-channel bound molecular state, far
smaller than the average interparticle separation. We find
the critical value of the resonance’s strength at which the
trimers first appear and calculate their binding energy as a
function of the resonance strength.

Thus if a BEC of strongly resonant p-wave molecules is
created, one of its main channels of decay will be by
molecular inelastic collisions, with two molecules turning
into one atom and one trimer. We estimate the molecular
lifetime due to this process and compare this with experi-
mental observations [3]. We discuss limitations on the
achievement of p-wave superfluids in both weak and
strong resonances arising from this and other inelastic
decay processes.

The theory developed here can be used to investigate the
true ground state of a strongly resonant p-wave conden-
sate. This is likely to be a gas of fermionic spin 1 trimers
(or possibly of larger composite particles).

We consider a p-wave resonantly coupled superfluid,
whose Hamiltonian is given by [6,7,11,14,15]
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Here ây, â are the creation and annihilation operators of a
spinless fermion (atom) with mass m, and b̂y�, b̂� are the
creation and annihilation operators of a bosonic diatomic
molecule of spin 1 (the 3D vector index � represents the
projection of spin). This superfluid is controlled by four
parameters. The first two are the detuning �0 and the
overall particle number N, an expectation value of the
operator N̂ �

P
pâ
y
pâp � 2

P
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3N=V�2=3=�2m�. The other
two are contained in the coupling constant g�jpj�. The
physical origin of the dependence of g on jpj lies in the
fact that the molecules have finite size, with g being
proportional to the wave function of the molecule in the
momentum space. This can be captured by choosing g to
remain constant as long as jpj � � (which we denote
simply by g) and quickly drop to zero if jpj � �. Here
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Re � @=� is the physical (closed-channel) size of the
molecules. In this Letter we take g�jpj� � g���� p�
(� is equal to 1 or 0 depending on whether its argument
is positive or negative). We believe the specific choice of
the functional dependence of g on p does not significantly
affect our results, with arguments to that end given below.

Two dimensionless parameters can be constructed out of
g, �F, and �, namely � � m5=2g2 ������

�F
p

=@3 and c2 �

m2g2�=�3�2
@

3�. In order to observe universal (short dis-
tance physics independent) behavior, the interparticle
separation (�@=

����������
m�F
p

) must be kept much bigger than
Re; thus �� c2. � and c2 control the perturbative expan-
sion of (1) in powers of the coupling g. It is customary,
when analyzing Eq. (1), to apply a mean field approxima-
tion whose validity is based on the smallness of g. Strictly
speaking, both � and c2 must be small in order for the mean
field approximation employed in the original publications
investigating Eq. (1) [6,7] to be valid. � depends on the
interparticle separation and can be made small simply by
reducing the particle density. c2, however, depends solely
on the physics of the Feshbach resonance which led to
Eq. (1); its value is fixed by the atomic type and Feshbach
resonance involved, so it cannot be continuously
controlled.

One terms the superfluids with �� 1 as those with
narrow Feshbach resonances, while the ones with �� 1
are the broad Feshbach resonance superfluids [6,11,16–
19]. Likewise, we will term the c2 � 1 resonances as the
strong p-wave Feshbach resonances, while those with
c2 � 1 are weak resonances. The experimentally observed
p-wave resonances are typically narrow. The analysis car-
ried out in Ref. [11] showed that the p-wave Feshbach
resonance in 40K used in Refs. [2,3] was strong. The
derivation relied on the scattering amplitude of two atoms
calculated in Refs. [6,11]: f�k� � k2=��1=v� k0k

2=2�
ik3�, where v � �mg2=	6�@!0�1� c2�
 is the effective
volume, controlled by the physical detuning !0 (related to
�0 by !0 � 	�0 �mg2�3=�9�2

@
2�
=	1� c2
), and k0 �

�4��1� c2�=��c2� is a parameter similar to the effective
range of s-wave scattering (having, however, the dimen-
sions of inverse length). Once k0 and � are known (nu-
merically or experimentally), c2 can also be found.

The narrow and weak p-wave resonances have been
thoroughly investigated in prior publications. It is therefore
imperative to consider the narrow and strong resonances.
The main idea behind the analysis is based on the fact that
fluctuational corrections to the mean field come from two

distinct regions in momentum space, p of order @=l, where
l is interparticle spacing, and p of order �. The former
capture the many-body physics of Eq. (1) and are small as
long as � is small. The latter come from high momenta and
energies at which no real particles propagate. Thus this
contribution, controlled by c2, is essentially few-body,
equivalent to solving a few-body Schrödinger equation.

We now turn our attention to the physical consequences
of strong resonances. The main consequence is the exis-
tence of a bound state of three atoms when c2 exceeds a
certain threshold. To show this, we calculate the scattering
amplitude of one atom and one molecule. This is given by a
sequence of diagrams depicted in Fig. 1. These diagrams
are identical to the ones studied in the context of the
s-wave BCS-BEC crossover [20,21].

The atoms propagate with the free propagator
G�p; !� � 1=	!� p2=�2m� � i0
, while to find the mo-
lecular propagator one needs to calculate its self-energy :
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(In these and subsequent expressions we set @ � 1 for
clarity.) Each loop in the diagrams in Fig. 1 is linearly
divergent. It is this divergence, occurring at momenta p�
� and controlled by c2, which we would like to capture. To
do so, we study the atom-dimer scattering problem with the
following kinematics: a boson of spin � and 4-momentum
(0, �� E3) scatters off a fermion with 4-momentum (0, 0).
The outgoing particles are a boson with spin � and
4-momentum (q, q0 � �� E3) and a fermion with (�q,
�q0). Here ��!0� is an implicit function of the detuning
such that the bosonic propagatorD�q; q0 � �� has a pole as
q, q0 ! 0. E3 � 0 is the energy at which we are looking
for a bound state. The scattering T matrix has the following
general form:

 T���p; p0� � T1�p; p0���� � T2�p; p0�p�p�=p2 (3)

and the scattering length abf is related to T1�0; 0� (eval-
uated at E3 � 0) as abf �

m
3� T1�0; 0�.

The integral equation for the T matrix is derived analo-
gously to the s-wave problem [20,21] and is
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FIG. 1. The diagrams whose sum gives
the scattering amplitude between an
atom and a molecule.
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The factor 1� c2 is the inverse residue of the bosonic propagator. T���q; q0� is analytic in the upper halfplane of q0 and
thus we may integrate out q0, setting q0 ! �q

2=2m. To solve the integral equation we then let p0 !�p
2=2m. For

simplicity we define Ti�p;�p2=2� 
 Ti�p�. Measuring momenta in units of the cutoff, energies in units of �2=m, and the
T matrix itself in units of 1=�m�� we find the integral equation

 Tj�p� � 6�2 c2

1� c2

p2

p2 � �� E3

��1� p��2j � 3c2

Z 2

0
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The coefficients aji�p; q� are given by an integration over directions of q:
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The scattering length abf is found by solving Eq. (5) at
E3 � 0. The binding energy of the trimer corresponds to a
pole in the T matrix and thus to a solution of the homoge-
neous integral equation at a specific value of E3.
Figure 2(a) shows how the scattering length is negative
for a weak Feshbach resonance, becoming more negative
and diverging at c2 � 3:3. This is the strength of the
resonance at which the bound trimer appears, as illustrated
in Fig. 2(b). As c2 ! 1 the scattering length saturates at
abf � 1:9=� and the binding energy at E3 � �0:11�2=m.

We note that at large c2 the large binding energy of the
trimer indicates that the physics at large momenta, sensi-
tive to the specific choice of g�jpj�, plays a role in its
formation. Yet for the values of c2 close to the threshold
of the appearance of the trimer, its binding energy is small
and thus it is insensitive to that choice [although the critical
value of c2, being defined in terms of Re, itself depends on
the choice of g�jpj�]. As c2 is increased further, we find it
extremely unlikely that trimers would disappear due to
some particular choice of g or due to some additional short
distance physics not taken into account by Eq. (1). Indeed,
to disappear, the trimer would need first to lower its energy,
going back to the regime where the short distance physics
is not important. Additionally, we have checked that sev-
eral different choices of g, representing realistic molecular
wave functions, give the same qualitative result.

The existence of the bound trimer state for large c2 raises
the possibility of an inelastic decay channel in which two
dimers collide to leave a trimer and an unbound atom (with
large relative velocity). (Henceforth we use the term
‘‘dimer’’ to refer to a molecule of two atoms, to distinguish
this clearly from a trimer.) In a nondegenerate gas of
dimers, these inelastic losses will cause the density of
dimers nd to decay as
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, with fin the inelastic scattering amplitude
into a final momentum kf. Arguments similar to the ones
presented above for dimer-atom scattering show that
jfinj

2 � R2
e. Thus, for large c2, such that the trimer binding

energy is �E3 � @
2=�mR2

e� and is large compared to the
incident kinetic energy, one finds
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@

m
Re: (8)

It is instructive to compare this result with the inelastic
decay constants into deep bound states for s-wave dimers,
formed from (two-component) fermions or from bosons
with s-wave scattering length a. Close to the s-wave
resonance, a� Re, and the decay constant (8) is much
smaller than that expected for bosons, �s-boson

dd � @a=m,
but is larger than that for s-wave dimers of fermions,
�s-fermion

dd � @Re
m �Re=a�

2:55 [22]. The suppressed decay of
s-wave dimers of fermions is explained in Ref. [22] as an
effect of the Pauli principle, reducing the probability to find
three atoms within a length scale Re. In a p-wave dimer the
two atoms have a probability of order unity to be inside the
centrifugal barrier, at a separation of order Re. Taking this
feature of the p-wave dimers into account, simple esti-
mates lead to �dd � @Re=m for decay into trimers, consis-
tent with the result (8) from the T matrix calculation. In
addition to this channel, there are inelastic channels—
active for both weak and strong resonances—involving
decay into deep dimer states. Applying the same simple
estimates, one finds that the inelastic decay constants for
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FIG. 2 (color online). (a) Scattering length abf in units of @=�
and (b) binding energy E3 of the trimer in units of �2=m, both as
functions of c2. Here, detuning has been set to zero. The large c2

limit is indicated.

PRL 99, 210402 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
23 NOVEMBER 2007

210402-3



dimer-dimer and dimer-atom scattering are also �dd �
�da � @Re=m.

In recent experimental work [3] a gas of p-wave
Feshbach dimers was created in 40K. Unfortunately the
lifetime of the dimers was observed to be quite short, about
2 ms. While 40K can suffer losses through dipolar relaxa-
tion (an effect expected to be absent for p-wave resonances
in other fermionic systems, for example 6Li), Ref. [3]
found that the lifetime was shorter than that predicted for
dipolar relaxation alone. Additional losses could arise from
inelastic collisions of the dimers. This mechanism would
imply a density dependence of the decay rate; this depen-
dence has not, as yet, been established experimentally.

Within the above considerations, we expect the decay
rate of dimers via relaxation into deep trimers or dimers
under inelastic collisions (with other dimers or with un-
bound atoms) to be of order �in �

@Re
m n, where n is the

density of atoms or dimers with which a given dimer can
collide. Taking n ’ 7� 1012 cm�3 (the atomic density in
the experiments of Ref. [3]) we find �in � 10 Hz. This
estimate is more than 1 order of magnitude smaller than
the additional decay rate required to account for the ob-
servations of Ref. [3]. However, we note that the prefactor
to the estimate is uncertain. In view of this uncertainty, and
in view of the lack of clear evidence of a density depen-
dence in the experiment, it remains an open issue whether
the dimer lifetime in Ref. [3] is limited by inelastic
collisions.

Our analysis has important consequences for the possi-
bilities to achieve superfluid phases close to a p-wave
resonance. On the BEC side of the resonance, our calcu-
lations show that the elastic dimer-dimer scattering ampli-
tude is fel � Re. Consequently, the elastic scattering rate is
of order �el �

@Re
m nd�kiRe�, which is typically much

smaller than the inelastic decay rate, �in �
@Re
m nd. (For a

BEC of dimers, ki is small compared to the inverse particle
spacing, 1=l, so kiRe & Re=l� 1.) It is therefore unlikely
that a BEC of dimers can undergo sufficient elastic colli-
sions to thermalize before inelastic losses deplete the gas.
On the other hand, on the BCS side of the resonance,
thermalization can proceed at a much faster rate, and will
be limited by the rate of hybridization of the dimers with
the unbound atoms (this is the rate at which pairs of atoms
can exchange their relative momentum). Assuming the
densities of dimers and atoms to be comparable, nd �
na 
 n, one finds that the hybridization rate, as set by
the width of the resonance, is �hyb �

�
1�c2

�F
@

, which leads
to �hyb=�in �

c2

1�c2
. Thus, provided the resonance is not

very weak (c2 very small), the rate of hybridization is
parametrically the same as �in, and the system may ther-
malize before inelastic losses deplete the gas. Thus our
results show that it is on the BCS side of a strong resonance
that one has the best opportunity to attain a thermalized
p-wave superfluid phase. Finally, we note that the limita-
tions we have described in this paragraph, arising from
decay into deep bound states, could be eliminated in an

‘‘optical Feshbach’’ scheme in which the particles are
coupled to a deep closed-channel molecule. In this case,
it is important that the resonance be sufficiently weak in
order also to eliminate inelastic decay processes into the
trimer states that always exist for strong resonances.

Finally, we remark that after this Letter became avail-
able as a preprint, a paper [23] appeared where similar
conclusions were reached.
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