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The fluxon dynamics in a long Josephson junction with a ferromagnetic insulating layer is investigated.
It is found that the Josephson phase obeys a double sine-Gordon equation involving a bound � fluxon
solution, and the internal oscillations of the bound pair acting as a clock exhibit Lorentz reductions in their
frequencies regarded as a relativistic effect in the time domain, i.e., time dilation. This is the complement
to the Lorentz contraction of fluxons with no clock. A possible observation scheme is also discussed.
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The Lorentz transformation in space-time plays a key
role in the special theory of relativity, resulting in counter-
intuitive phenomena far from our everyday experience
such as length contraction when an object is travelling
close to the speed of light. The Lorentz contraction is
difficult to confirm experimentally for energetic reasons
related to macroscopic objects;, i.e., macroscopic objects
cannot be accelerated to a sufficiently high velocity for the
Lorentz contraction to be observed. Only a few examples
have been demonstrated in specific systems using Earth’s
rotation [1–3]. An elementary excitation with a quantum
unit of magnetic flux in long Josephson junctions, known
as a fluxon, obeys sine-Gordon equations involving the
Lorentz invariance. The length contraction of fluxons in
Josephson junctions was shown in experiments by record-
ing the voltage pulse created by the fluxon motion [4] and
by imaging the contraction of the fluxon-antifluxon colli-
sion region in an annular Josephson junction with increas-
ing fluxon velocity by employing a low-temperature
scanning electron microscope [5].

However, a single fluxon cannot exhibit another relativ-
istic effect in the time domain, namely, time dilation where
moving clocks run slowly, because it does not have its own
clock. As with any vibrating system, an internal degree of
freedom in the system can serve as a moving clock count-
ing time intervals. One candidate is a bound pair consisting
of a fluxon and an antifluxon, and known as a breather. The
breather moves along a Josephson transmission line with
the internal oscillation in which the fluxon and the anti-
fluxon are exchanging their positions. This internal oscil-
lation acts as a clock. However, the breather is inadequate
for testing this effect because it is too fragile as regards
external perturbations [6]. In particular, the breather dis-
appears even in a small dissipation because it is topologi-
cally equivalent to the vacuum. This feature makes it
extremely difficult to observe the effect of time dilation.
Another possibility is the �-� kink pair solution in a
double sine-Gordon equation (DSGE) in long isolated
Josephson junctions [7]. This kink pair has a stable internal
oscillation below the lower edge of the continuum phonon

band [8]. Although this internal oscillation actually attenu-
ates in the presence of dissipation, it is possible to excite
the oscillation again on demand because the kink pair itself
with a topological twist cannot decay into vacuum.
However, it is difficult to observe �-� kink oscillations
in isolated systems with a noncontact measurement. In this
Letter, we propose a new type of Josephson transmission
line that obeys a DSGE, namely, a long Josephson junction
with a ferromagnetic insulator, in order to explore the time
dilation of a bound pair of half fluxons through their
internal oscillations. We also discuss an experimental
scheme for observing time dilation in such a system.

In the past decade, considerable attention has been
directed towards Josephson � junctions characterized by
a minimum Josephson coupling energy at a phase differ-
ence of �, in relation to the physics of a Cooper pair with a
finite momentum. The crossover between 0 and � junction
states was demonstrated in superconductor-ferromagnet-
superconductor (SFS) junctions as a function of tempera-
ture [9] and barrier thickness [10]. In the vicinity of the
crossover, it is conjectured that a second order component
of Cooper-pair tunneling, i.e., sin�2�� with � being the
phase difference across the junction, becomes dominant in
the current-phase relation [11–14]. This might significantly
change the dynamics of the phase difference across the
junction through the current-phase relation in a long
Josephson junction.

Consider two identical superconductors separated by a
thin ferromagnetic insulator with thickness a lying in the
xy plane as shown in Fig. 1. The dimension w in the y

FIG. 1. Schematic diagram of a long Josephson junction with a
ferromagnetic insulator.
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direction is assumed to be much smaller than the Josephson
penetration depth, and thus the junction is considered to be
one-dimensional [5]. Starting as usual from Maxwell equa-
tions that takes account of the spatiotemporal dependence
of the phase difference� across the junction due to electric
field Ez and magnetic field By through the relations Ez �
�@=2ea�@t� and By � �@=2ed�@x�, with @t � @=@t and
@x � @=@x, we find

 �@=2e�d�@2
x� � J� �@�=2ea�@2

t �; (1)

where � is the dielectric constant of the ferromagnetic
insulator. In contrast to a usual long Josephson junction,
the current density in a long Josephson junction with a
ferromagnetic insulator is now given as [11–14]

 J � Jc�� sin�� sin2��; (2)

where Jc is the amplitude of the current density for the
second harmonic and � is the ratio of the amplitude be-
tween the first and second harmonics. When � ’ 0, Jc
becomes the Josephson critical current density.
Substituting Eq. (2) into Eq. (1), we obtain

 @2
x�� @2

t � � � sin�� sin2�; (3)

where the coordinate x is normalized by
���
2
p
�J where �J �����������������������

@=4e�dJc
p

is the Josephson penetration depth for � � 0
and the time t is normalized by

���
2
p
!�1
J , where !J � �c=�J

is the frequency of the Josephson plasma oscillation with
�c �

���������������
a=d��

p
. The phase difference in an SFS hybrid

junction thus obeys a DSGE, and constitutes one of the
main results in this Letter.

A DSGE is not integrable and exact soliton solutions do
not exist. However, it is possible to find a topologically
stable 2�-kink solution for a range of parameter �, i.e.,
� > 0. The potential energy density is expressed as
UJ��� � ��1� cos�� � 1

2 �1� cos2��. Here, the energy
is normalized by E0 � 2

���
2
p
"Jw�J, where "J � @Jc=4e is

the specific Josephson coupling energy per unit area for
� � 0. Since this potential has minima at � � 0�mod 2��
for � > 0, there are 2�-kink solutions where the phase
changes from 0 to �2� as x passes from �1 to 1. The
shape of the 2� kink is determined by the competition
between the potential energy density UJ��� and the elastic
energy density, UE��� � 1=2�@x��

2, which measures the
rigidity of the Josephson phase difference.

For 0< �< 2, the potential energy density UJ also has
an extra local minimum at� � �, in addition to the� � 0
minima. This minimum leads to a new situation where the
2� kink splits into two separate � kinks owing to the gain
of the Josephson energy UJ against the elastic energy UE.
The equilibrium separation between two � kinks is deter-
mined by the competition between the gain of UJ around
� � � and the loss of UE by the additional change in the
phase difference. With a moving �-� kink pair, these
compete in time, resulting in a new type of dynamics.

The �-� kink pair exhibits an internal oscillation related
to the relative oscillations of two � kinks around the
equilibrium separation [15,16]. Figure 2 shows a typical
profile of phase difference � during the �-� kink
oscillation.

The eigenfrequency of the �-� kink oscillation can be
estimated by using the collective coordinate method [16].
We assume the solution to DSGE in the form

 � � 2tan�1e��x��R=2�� � 2tan�1e��x��R=2��; (4)

where � �
�������������
2� �
p

is the slope of each � kink and R
denotes the separation between two � kinks, which can
be regarded as a collective coordinate that describes �-�
kink oscillation. Substituting Eq. (4) into the Hamiltonian
of the DSGE, the potential energy and the inertial mass for
the collective coordinate R are obtained as
 

V�R� � 2�
�

1�
�R

sinh��R�

�
�

4

�

�
1�

�R
sinh��R�

�

	 coth2��R=2� � 2�R coth��R=2�; (5)

 M�R� � �
�
1�

�R
sinh�R

�
: (6)

The equilibrium separation R0 can be determined from the
relation cosh2��R0=2� � 1� 2=�. Thus, the �-� kink
oscillation can be regarded as the oscillation of a particle
with a mass depending on its position around the equilib-
rium position R0 on the anharmonic potential shown in
Fig. 3. In a harmonic approximation we obtain the eigen-
frequency !0��� �

�������������������������������
V 00�R0�=M�R0�

p
, where the prime de-

notes the differentiation with respect to R. This frequency
of the �-� kink oscillation serves as a clock to measure the
time.
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FIG. 2 (color online). Phase profile during the �-� kink os-
cillation. Vertical (red) arrows denote the positions of � kinks.
Expansion and contraction of springs express the deviation from
equilibrium separation between � kinks symbolically and hori-
zontal (green) arrows denote the directions of restoring forces.
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Since the DSGE is also Lorentz invariant, the period of
the �-� kink oscillation should increase as the velocity of
the pair increases as a consequence of the relativistic time
delay

 T=T0 � f1� �v= �c�2g�1=2; (7)

where T is the period of �-� kink oscillation at the finite
velocity v, and T0 is the period at v � 0. However, in an
actual junction, dissipation always exists and destroys
Lorentz invariance. Scott studied the effects of dissipation
on the time dilation of a moving breather and showed that
the frequency suffers Lorentz reduction, while the damping
of oscillation is independent of velocity [17]. If this is also
the case for �-� kink oscillation, a �-� kink pair can be
used in testing the relativistic time dilation.

To confirm the time dilation of a traveling kink pair, we
performed a numerical simulation by using a standard
difference approximation with the perturbed DSGE,

 @2
t �� @

2
x�� �@t�� � sin�� sin2� � Ib; (8)

where � � 1=!JRsC is a damping coefficient where Rs is
the shunt resistance and C is the capacitance of the junc-
tion. Ib is the direct bias current which keeps the velocity of
the �-� kink pair.

Figure 4 shows the numerical results for T=T0 as a
function of the terminal velocity v of a pair, which is
determined by the balance between damping (�) and driv-
ing (Ib). Here we take � � 0:25 and assume that an initial
bound pair is expressed by Eq. (4) with appropriate sepa-
rations. The solid curve is simply the prediction obtained
from the special theory of relativity, i.e., the relativistic
time delay, described by Eq. (7). From this, we can see that
our numerical results for different strengths of dissipation
are in good agreement with the theoretical predictions. In
addition, the values of T0 obtained from a numerical simu-
lation are about 9.44 for � � 0:01 and 9.46 for � � 0:05,
which are close to the value of 9.24 estimated from
!0�0:25�. For larger �, we have seen the agreement with
the theory in the lower velocity region where �T & 1,
which means underdamping. These results indicate that
the frequency of the �-� kink oscillation can be consid-

ered to be almost independent of �. Thus, the �-� kink
oscillation is a promising candidate for use in testing the
relativistic time dilation in superconducting quantum
circuits.

Now let us discuss a possible scheme for observing the
effect of the time dilatation of a �-� kink oscillation in a
long SFS junction. In general, it is difficult to monitor the
real-time dynamics of a �-� kink oscillation directly,
while it might be possible to determine the eigenfrequency
of a propagating bound pair by using the resonance effect.
The bound pair exhibits a forced oscillation under an
external alternating current, leading to excitation of the
�-� kink pair. In particular, resonance occurs when the
frequency of the external current matches the frequency of
the �-� kink oscillation. With resonance, the amplitude of
the oscillation becomes large, and thus achieve a distin-
guishable value compared with the equilibrium width of
the kink pair. It may be possible to observe the �-� kink
pair by using an existing experimental technique such as
low-temperature scanning electron microscopy [5],
namely, by imaging the collision region between a
�-kink pair and an anti-�-kink pair in an annular SFS
Josephson junction. Thus, we can measure the frequency
of the �-� kink oscillation by detecting the total width of a
�-� kink pair as a function of the frequency of the applied
oscillating current.

To study the resonance behavior, we performed a nu-
merical simulation based on Eq. (8) including external
alternating currents Iex sin!t together with the direct bias
current Ib, where Iex and ! are the normalized amplitude
and frequency, respectively. The parameters we use in the
simulations are � � 0:25, Iex � 0:15 and � � 0:1.

Figure 5 shows the amplitude of the oscillation of the
separation between � kinks as a function of the normalized
period of external alternating current 2�=!T0 with T0 �
9:54 and the terminal velocity of a pair v= �c. The amplitude

FIG. 4. Velocity dependence of the �-� kink oscillation period
normalized by the period at v � 0 for � � 0:25. The points are
obtained by numerical simulations for different strengths of
dissipation, while the solid curve is the theoretical expression
of the time dilation, i.e., Eq. (7).

 

 

        

FIG. 3 (color online). Interaction potential between � kinks.
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is estimated from the half value of the difference between
the maximum and minimum separation of the kink pair,
and is normalized by the width of a moving � kink with

velocity v, i.e.,
���
2
p
�J

�����������������������
1� �v= �c�2

p
=�. We can easily find

the resonance of the �-� kink oscillation as indicated by a
(white) dotted line. This line shows the Lorentz dilation
expressed by Eq. (7). In addition, there is another reso-
nance with 1=2 harmonic that has a period twice that of
eigen oscillation as a result of a nonlinear effect, called
nonlinear resonance [18]. As seen in Fig. 3, a nonlinear
interaction is induced between� kinks when the amplitude
of the �-� kink oscillation becomes large because of an
increase in the external field amplitude. In contrast to a
linear interaction yielding a harmonic resonance, the non-
linear interaction gives rise to a subharmonic resonance at
a double eigenfrequency.The 1=2-harmonic resonance cor-
responds to the cubic nonlinearity of the asymmetric po-
tential shown in Fig. 3. There is also another resonance that
is almost independent of the pair velocity around a period
of 0.5. This resonance corresponds to a homogeneous
Josephson plasma oscillation whose period TJP is deter-
mined by the curvature of UJ around � � 0 minima, i.e.,
TJP=T0 � 2�=

�������������
U00J �0�

p
T0 � 2�=

�������������
�� 2
p

T0 ’ 0:44, where
the prime denotes the differentiation with respect to �.

Finally, let us roughly estimate the parameters. In the
vicinity of the 0-� crossover, Josephson critical current
would be quite small, say, 2 orders of magnitude smaller
than that of usual junction [12,14], and thus �J 
 100 �m,
!J 
 10 GHz and �
 0:1. The amplitude of �-� kink
oscillation at the resonance is of the order of 10–100 �m,
which is within the range of spatial resolution of the
experiment [5].

In summary, we have studied fluxon dynamics in a long
Josephson junction with a ferromagnetic insulator. In such

a system, the Josephson current-phase relation differs from
that of a conventional junction, resulting in half-integer
fluxons that obey a double sine-Gordon equation. The
bound pair of the half-fluxons exhibits an internal oscilla-
tion that is unique to this system, and could be detected
through this oscillation by using the resonance effect. This
might provide evidence for the existence of a second
harmonic component in the current-phase relation of an
SFS hybrid junction. In addition, we demonstrated numeri-
cally the time dilation of the bound half-fluxon pair by
detecting the Lorentz reduction in its frequency as a func-
tion of pair velocity. This is the complement to the Lorentz
contraction. Moreover, a quantized �-� kink pair might
also provide an application for Josephson-based quantum
computers as a new type of mobile qubit using Josephson�
states [19].
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FIG. 5 (color online). Amplitude of the �-� kink oscillation as
a function of the period of external alternating current and the
velocity of the bound fluxon pair. The (white) dotted line denotes
the relation of the relativistic time dilation Eq. (7).
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