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An extension of the Drude model is proposed that accounts for the spin and spin-orbit interaction of
charge carriers. Spin currents appear due to the combined action of the external electric field, crystal field,
and scattering of charge carriers. The expression for the spin Hall conductivity is derived for metals and
semiconductors that is independent of the scattering mechanism. In cubic metals, the spin Hall
conductivity �s and charge conductivity �c are related through �s � �2�@=�3mc

2���2
c with m being

the bare electron mass. The theoretically computed value is in agreement with experiment.
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It has been common knowledge in atomic physics that
due to the spin-orbit interaction the spatial separation of
electrons with different spin projections can be achieved
through scattering of an unpolarized electron beam by an
unpolarized target [1]. Dyakonov and Perel were the first to
notice that in the presence of the electric current the
scattering of charge carriers by impurities in a semicon-
ductor must lead to a similar effect [2]. It was subsequently
called the spin Hall effect [3] and observed in semicon-
ductors [4,5] and metals [6]. A number of microscopic
models have been developed that explain spatial separation
of spin polarizations by various ‘‘extrinsic’’ (due to impu-
rities) and ‘‘intrinsic’’ (impurity-free) mechanisms; see, for
review, Ref. [7]. While these models provide valuable in-
sight into the microscopic origin of the spin Hall effect,
they are lacking the universality of, e.g., the Drude model
of charge conductivity [8]. The Drude model, in spite of
being classical in nature, has been very powerful in de-
scribing dc and ac conductivity and its temperature depen-
dence. It also gives the accurate value of the Hall
coefficient by catching correctly the orbital motion of
charge carriers in the presence of the magnetic field. The
power of the Drude model resides in the fact that it ex-
presses conductivity, �D � e2n�=m, via charge e, concen-
tration n, mass m, and relaxation time � of charge carriers
regardless of the scattering mechanism. The same parame-
ters enter expressions describing experiments other than
the Ohm’s law; e.g., n and the sign of e can be extracted
from measurements of the Hall coefficient RH �
��nec��1, � can be extracted from measurements of the
frequency dependence of the impedance, and m can be
extracted from measurements of the cyclotron resonance.
This allows one to test theoretical concepts of charge
conductivity regardless of the degree of accuracy with
which one can compute parameters entering �D.

In this Letter we will try to develop a similar approach to
the spin Hall conductivity. We will take the Drude model a
little further by incorporating spin and spin-orbit interac-
tion into the dynamics of charge carriers. We will argue
that such a straightforward extension of the Drude model

allows one to obtain universal expression for spin Hall
conductivity that is independent of the scattering mecha-
nism. The spin Hall effect appears due to the combined
action of the external electric field, quadrupole crystal
electric field, and scattering of charge carriers. Same as
for charge conductivity, all details of the scattering mecha-
nism are absorbed into the momentum relaxation time �.
We will show that this crude model provides correct
values of spin Hall conductivity in both metals and
semiconductors.

For certainty we will speak about electrons but the
model will equally apply to holes. The nonrelativistic limit
of the Dirac Hamiltonian for a spin-1=2 particle is [9]

 H �
p2

2m
�U�r� �

@
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�
@U
@r
	 p

�
: (1)

Here U�r� represents the action of microscopic electric
field on charge carriers. It incorporates effects of electro-
static crystal potential �0, potential due to imperfections
of the crystal lattice �i, and external potential �e,

 U�r� � e�0�r� � e�i�r� � e�e�r�: (2)

The last term in Eq. (1) is the spin-orbit interaction, with �
being Pauli matrices.

Hamiltonian mechanics for canonically conjugated var-
iables p and r is described by the equations
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(These equations can also be derived from quantum-
mechanical relations: i@ _r � �r;H �, i@ _p � �p;H �,
�ri; pj� � i@�ij.) From Eq. (3) one has
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The second term in the expression for the momentum,
Eq. (5), that is proportional to the cross product of the
electron magnetic moment and the electric field, is the so-
called ‘‘hidden mechanical momentum’’ associated with
the momentum of the electromagnetic field, see, e.g.,
Ref. [10] and references therein.

Substitution of Eqs. (5) and (6) into Eq. (4) yields the
following form of the second Newton’s law for charge
carriers:

 m�r � �
@U
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� F��r; _r�; (7)

where the spin-dependent force is given by
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Here we neglected the term proportional to 1=c4 that
exceeds the accuracy of Eq. (1) and took into account
that _r in the second line of Eq. (8), that originates from
the expression for p in Eq. (5), should not be differentiated
on r because p and r in Eqs. (3) and (4) are independent
canonically conjugated variables. Note that the force in
Eq. (8) is equivalent to the Lorentz force, F� � �e=c�	
� _r	 B��, acting on a particle of charge e in the magnetic
field

 B � � r	A�; A� �
@

4mc
�� 	 Etot�; (9)

with Etot being the total electric field, eEtot � �@U=@r.
One can trace this force to the fact that with an accuracy to
c�2 the Hamiltonian (1) can be written as [11]

 H �
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2
�U�r�: (10)

The crystal field creates a nonzero average of this force any
time the charge carriers have a nonzero drift velocity, h _ri �

0. It is this effective Lorentz force that is responsible for the
spin Hall effect. Our conclusion is similar to the conclusion
of Hirsch [12], who studied the force exerted on a line of
moving magnetic dipoles by the electrostatic field of
charges arranged in a cubic lattice. For a cubic lattice
(see below) our result for the effective Lorentz force co-
incides up to a factor of 2 with the result obtained by
Hirsch. As in our approach, Hirsch found that the effective
Lorentz force is generated by the second derivative of the
crystal field. In computing this force he replaced moving
magnetic dipoles with stationary electric dipoles that pro-
duce an equivalent electric field. This eliminated the hid-

den momentum responsible for the first term in the first line
of Eq. (8). The absence of this term in Hirsch’s model
accounts for the above mentioned difference by a factor
of 2.

In the spirit of the Drude model we shall now add to
Eq. (7) the drag force �m _r=�. Then Eq. (7) becomes

 m�r � �
@U
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m
�

_r� F��r; _r�: (11)

Here we assume that to the first approximation the velocity
relaxation of charge carriers is independent of their spin,
that is, � is independent of �. Since the relaxation is due to
imperfections of the crystal lattice, in order not to count
their effect twice, we should now think ofU�r� in Eqs. (11)
and (8) as a sum of the ideal periodic potential of the
crystal lattice, e�0, and the potential produced by the
externally applied voltage, e�e. Because of relativistic
smallness of the spin-dependent force (8) one can treat
F��r; _r� in Eq. (11) as a perturbation. Then the solution of
Eq. (11) can be written in the form _r � _r0 � _r1, where _r1 is
a small spin-dependent part of the velocity proportional to
c�2. In the presence of a constant external electric field
E � �@�e=@r, with the linear accuracy on E, one obtains
from Eqs. (11) and (8)
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In deriving Eq. (13) we have made an assumption that

 hF��r0; _r0�i 

e
c
h _r0 	B��r0�i �

e
c
h _r0i 	 hB�i: (14)

Some justification of this assumption is provided by the
following argument. By symmetry, the only reason for
hF�i to be different from zero would be h _r0i � 0.
Consequently, hF�i should be first order on h _r0i. Being
perpendicular to the velocity, the force F� � �e=c�	
� _r	B�� does not do mechanical work on the charge.
Neither should hF�i, with respect to h _r0i, rendering the
form hF�i � �e=c��h _r0i 	Beff�. Since the trajectory of the
particle r0�t� does not have strong correlation with the
quadrupole component of the crystal electric field, the
above factorization of the average with the choice Beff �
hB�i should not deviate strongly from the exact average.

The right-hand side of Eq. (13) contains the volume
average of rirj�0�r�. In what follows we will study the
spin Hall effect in a cubic lattice. Generalization to other
lattices is straightforward and will be considered else-
where. The case of a cubic lattice, besides simplicity, is
interesting because experiments performed to date have
been done in cubic semiconductors and in aluminum that is
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also cubic [4–6]. In the cubic case the only invariant
permitted by symmetry is

 

�
@2�

@ri@rj

�
� A�ij; (15)

where A is a constant to be determined later. With the help
of Eq. (15) one obtains from Eq. (13)

 h _r1i �
@e2�2A

2m3c2 �� 	 E�: (16)

Let us now introduce the vector of spin polarization of
the electron fluid, � � h�i, which absolute value lies
between 0 and 1,

 � �
n� � n�
n� � n�

: (17)

Here n� are concentrations of charge carriers with spins
parallel and antiparallel to �, respectively, with n� �
n� � n being the total concentration of charges carrying
the electric current. For a ferromagnet, � � 0 is the equi-
librium state of charge carriers below the Curie tempera-
ture, while for a small nonmagnetic conductor a significant
value of � can be achieved through injection of spin-
polarized charge carriers from a magnetic conductor; see,
for review, Ref. [13]. The density matrix of the charge
carriers in the spin space (normalized to their total con-
centration n) can be written as

 N � 1
2n�1� � � ��: (18)

The electric current is

 j � ehN _ri � ehN� _r0 � _r1�i: (19)

Substituting here Eqs. (12) and (16) one obtains

 j � �cE� �s�� 	 E�; (20)

where charge conductivity and spin Hall conductivity are
given by

 �c � �D �
e2n�
m

; (21)

 �s �
@e3n�2A

2m3c2 : (22)

An interesting observation is that the ratio

 

�s
�c
�

@e�A

2m2c2 (23)

is independent of the concentration of charge carriers. This
result also follows from microscopic models of the spin
Hall effect [14,15]. It explains why this ratio has the same
order of magnitude in metals and semiconductors [4,6]
despite very different concentrations of charge carriers.
Note that according to Eq. (23) the temperature depen-
dence of the ratio of spin Hall and charge conductivities is

determined by the temperature dependence of the relaxa-
tion time �. Consequently, in metals, one should observe
monotonic temperature dependence of spin Hall conduc-
tivity, �s�T� / �2

c�T�, while in semiconductors �s�T� /
n�T��2�T� may exhibit maximum on temperature [16].

Equation (13) shows that quantitative analysis of the
spin Hall effect requires knowledge of the volume average
of the quadrupole component of the crystal electric field,
h@2�0=@ri@rji. For a specific crystal it can be computed by
methods of density functional theory. For a cubic crystal
h@2�0=@ri@rji reduces to a single constant A; see Eq. (15).
Here we will provide a simple estimate of this constant. In
a metal the electrostatic potential created by the crystal
lattice of positively charged ions satisfies the Maxwell
equation

 r2�0 � �4���x; y; z�; (24)

where ��x; y; z� is the local charge density of ions. The
volume average of this equation is
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(25)

Because of the periodicity of the crystal field, it is sufficient
to compute this average over the unit cell of the crystal.
This gives

 A �
4�
3
Zen0; (26)

where �Ze and n0 are the charge and the concentration of
ions, respectively. The sign in h�i � �Zen0 is determined
by our choice of the negative charge e of the charge
carriers. In the accurate quantum-mechanical calcula-
tion of the parameter A produced by the distribution of
charges in a cubic lattice, Z should come out as a number of
order unity when n0 is chosen as the inverse volume of
the unit cell. This should be true for both metals and
semiconductors.

Substitution of Eq. (26) into Eq. (23) gives

 

�s
�c
�

2�@e2

3m2c2 Zn0�: (27)

At n0 � 1022 cm�3 (1023 cm�3) and �� 10�13 s
(10�14 s) this ratio is of order 10�4 which is in agreement
with recent experimental findings in metals and semicon-
ductors [4,6]. According to our model such a value of
�s=�c is not universal though. In pure conductors, when
scattering of charge carriers is dominated by phonons,
large � at low temperature can provide much greater values
of the ratio of spin Hall and charge conductivities.

For the absolute value of spin Hall conductivity one
obtains from Eq. (22)

 �s �
2�@e4

3m3c2 Znn0�
2: (28)
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In metals, when Z is identified with the ion valence, one
can replace Zn0 with n and write Eq. (28) as

 �s �
2�@

3mc2 �
2
c: (29)

This relation between spin Hall and charge conductivities
permits comparison with experimental data without any
fitting parameters. Such a comparison with the data on
aluminum [6] is shown in Table I. [Note that conductivity
in Gauss units that have been used to derive Eq. (29),
equals conductivity in units of ��1 m�1 times 9	 109.]
Given the crudeness of the model the agreement by order
of magnitude between theory and experiment is quite
remarkable. Note that in the spirit of the Drude model
one can also make a straightforward extension of our
model to the ac spin Hall conductivity.

Throughout our derivations we did not distinguished
between the effective mass and the bare mass of charge
carriers. To account for their difference we notice that the
spin-orbit term in Eq. (1) can be interpreted as the Zeeman
interaction of the electron spin with the effective magnetic
field that is generated by the electrostatic field in the
moving frame of the electron. Consequently, one of the
masses in @=�4m2c2� in front of the spin-orbit term must be
the bare electron mass that enters the Bohr magneton,
while the other m is due to orbital motion. In a solid, one
should replace m2 in the spin-orbit term with mm, where
m is the effective electron mass. Also in the first term of
Eq. (1) m should be replaced by m. After these replace-
ments are made and followed down to Eq. (29), m2 gets
absorbed into �2

c while 1=m in front of �2
c can be traced to

the expression for the Bohr magneton, �B � jej@=�2mc�.
Thus the coefficient in front of �2

c in Eq. (29) contains the
bare electron mass. We used this fact for computing nu-
merical values of �s presented in Table I.

The theory of the spin Hall effect developed in this
Letter should also apply to the anomalous Hall effect
observed in ferromagnets. According to Eq. (16) the
weak flow of charge carriers with opposite spin polariza-
tions in the opposite (perpendicular to E) directions occurs
regardless of the average polarization � given by Eq. (17).
When the time of spin relaxation of charge carriers is
sufficiently long, this will lead to the spin polarization of

the boundaries of a small conductor even when � � 0. On
the contrary, the spin Hall current given by the second term
in Eq. (20) is proportional to �. In nonmagnetic metals and
semiconductors, large spin polarization is not easy to
achieve but in a ferromagnetic metal � can be of order
unity, resulting in the noticeable current, �s�� 	 E�, that is
normal to E and normal to the magnetization.

In conclusion, we have presented a simple extension of
the Drude model of conductivity to the case of charge
carriers that have spin and spin-orbit interaction. The
spin Hall effect appears naturally in such a theory as a
combined action of the external voltage, crystal electric
field, and scattering of charge carriers. The expression for
spin Hall conductivity is independent of the mechanism of
scattering. Theoretical values of spin Hall conductivity
computed within such a model are in agreement with
experimental data on metals and semiconductors. The
model can, therefore, serve as a simple physical picture
of the spin Hall effect.
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TABLE I. Comparison of Eq. (29) with experimental data [6]
on charge and spin Hall conductivities in Al strips of 12 and
25 nm thickness.

Conductivity Experiment (��1 m�1) Theory (��1 m�1)

�c (12 nm) 1:05	 107

�s (12 nm) �3:4� 0:6� 	 103 2:6	 103

�c (25 nm) 1:7	 107

�s (25 nm) �2:7� 0:6� 	 103 6:9	 103
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