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The dragging velocity of a model solid lubricant confined between sliding periodic substrates exhibits a
phase transition between two regimes, respectively, with quantized and with continuous lubricant center-
of-mass velocity. The transition, occurring for increasing external driving force Fext acting on the lubri-
cant, displays a large hysteresis, and has the features of depinning transitions in static friction, only taking
place on the fly. Although different in nature, this phenomenon appears isomorphic to a static Aubry
depinning transition in a Frenkel-Kontorova model, the role of particles now taken by the moving kinks of
the lubricant-substrate interface. We suggest a possible realization in 2D optical lattice experiments.
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One of the current areas of development in the modern
understanding of sliding friction is the depinning transition
between substrate and slider in static friction [1]. A slider
initially pinned on a substrate requires a finite force in
order to move, whereas an unpinned one will move even
under an infinitesimal force. It is generally known that
ideal crystalline sliders commensurate with periodic sub-
strates are always pinned, whereas incommensurate ones
exhibit as a function of material parameters a sharp tran-
sition between a rigid, pinned state for soft sliders on
strongly attractive substrates and a freely sliding state for
hard sliders on weakly attractive perfect substrates. The
standard paradigm for that transition [2] is the Aubry
transition in the time-honored one-dimensional (1D)
Frenkel-Kontorova (FK) model [3,4]. Once sliders are set
into motion, however, one would generally expect no
further rigidity or pinning to persist or to appear. It was
thus rather surprising to find that simple systems like the 3-
length-scale driven 1D model of Ref. [5], inspired by the
tribological problem of two sliding crystal surfaces with a
thin solid lubricant layer in between, exhibits a novel kind
of rigidity, now around a state of dynamical motion, where
the lubricant center-of-mass (c.m.) velocity is robustly
locked onto quantized plateau values [6–8]. The dynami-
cal pinning of the lubricant’s motion onto a rigidly quan-
tized relative velocity state has been understood in terms of
kinks of the lubricant being set into motion by the shear
due to the moving surfaces. This kind of kink dragging
can be argued to represent a rather general mechanism,
possibly at play also in more realistic two-dimensional
situations.

One such situation could be realized, e.g., by attempting
to slide a rare gas physisorbed layer on a crystalline
surface, by means of an external dragging agent, such as
an atomic force microscope tip, or an optical tweezer, or a

2D optical lattice. In addition, the substrate could be
oscillated in a quartz crystal microbalance (QCM), the
inertial force acting as an (infinite wavelength) dragging
agent. In either case, the external potential would in reality
drag the solitons or discommensurations formed by the
adsorbate with the substrate—it would drag the 2D
Moiré patterns. While such a class of phenomena has not
yet been explored, it is potentially quite interesting, and its
extent and consequences deserve a full theoretical under-
standing. In this Letter we present a close analysis reveal-
ing that the lubricant velocity-pinned state shares many
more of the characters typical of ordinary pinning in static
friction, including hysteresis against a depinning external
force Fext, and a genuine depinning transition as a function
of lubricant stiffness, which appears as a dynamical iso-
morph to the Aubry transition of static friction.

Starting with a chain of harmonically interacting parti-
cles [9] (the lubricant layer), the Hamiltonian [6,7]
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contains the interaction with the two mutually sliding
substrates of sinusoidal amplitudesU� andU� and periods
a� and a�, different from the rest length a0 of the springs,
which sets a third length scale. Introducing dimensionless
length ratios r� � a�=a0, we assume r� >max�r�; r

�1
� �,

whereby the (�) slider has the closest periodicity to the
lubricant, the (�) slider the furthest. To study depinning,
we here apply a uniform external force Fext to all chain
particles. The infinite chain size is managed—in the gen-
eral incommensurate case—by means of periodic bound-
ary conditions and finite-size scaling [6,8]. Sliding the
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substrates at constant relative velocity vext, the lubricant
equations of motion are integrated by a standard Runge-
Kutta algorithm, including a phenomenological viscous
friction force �2�� _xi �

1
2vext� � �2�� _xi � vw� account-

ing for various sources of dissipation. As shown earlier
[6,7], for Fext � 0 and a wide range of parameters, the
sliding chain reaches a dynamical stationary state charac-
terized by a quantized plateau velocity

 vcm=vext � vplateau=vext � 1� r�1
� ; (2)

depending solely on the incommensurability ratio r�, in-
dependent of r�, K, �, vext, and even of U�=U�. In this
quantized state of motion the array of topological solitons
(kinks for r� > 1 or antikinks for r� < 1) formed by the
chain with the least mismatched (�) substrate is rigidly
dragged at velocity vext by the most mismatched (�)
substrate. This dynamical pinning of the kink velocity to
the moving (�) slider suggests a more complete analogy to
the static pinned state of particles in the standard FK
model, where a finite force Fext >FFK

c is required to slide
the chain over a periodic substrate. Depending on the ratio
�FK between the substrate and chain periodicities, static
pinning in the FK model occurs for arbitrary K for rational
�FK, whereas irrational �FK’s show a depinning (Aubry)
transition taking place at a critical chain stiffness KAubry,
beyond which free sliding is induced by arbitrarily small
Fext [3,4]. In the present slider-lubricant-slider problem,
the kinks formed by the lubricant over the (�) slider form a
1D lattice with an average distance dk � a�=�r� � 1�,
implying a kink coverage � � a�=dk � r��1� r

�1
� � of

the (�) substrate (for antikinks, � < 0). If the kinks here
play the role of the particles in the FK model, we should be
able, depending on the relative commensurability �, to
observe either indefinite pinning (i.e., quantized lubricant
velocity) in the commensurate case or else an Aubry-like
depinning transition in the incommensurate case. We find
that this is what happens, moreover, with a clearly outlined
isomorphism of the dynamical kink pinning problem to the
static particle pinning of the FK model.

In order to highlight this deep similarity with the static
case, beginning from a quantized-velocity state, we start
off by studying the motion of the chain under the action of
an adiabatically cycled external force Fext. We select two
prototypical kink coverages, one where the kink lattice is
commensurate with the (�) dragging slider (� � 1, real-
ized by r� � �, r� � �2, with � � �1�

���
5
p
�=2, the

golden mean), and another incommensurate (� � �, ob-
tained with r� � �, r� � �3). The exactly quantized c.m.
velocity plateau at Fext � 0 suggests null response to
perturbations, so that any 0<Fext <F�"c should have no
effect whatsoever on vcm (‘‘incompressibility’’).

Figure 1 displays the result of cycling the external force
Fext up and down in small steps, for ��1, ��Km��1=2 � 1
(underdamped regime), two different vext, and a chain
stiffness K within the velocity plateau. It displays a clear
incompressibility and a hysteretic loop, analogous to the

depinning transition in static friction [1] and in the FK
model [3]. For increasing Fext the lubricant average veloc-
ity vcm is discontinuous at F�"c , with a dynamical depin-
ning, a finite jump �v, and a bistable behavior. When Fext

is decreased back, the depinned state survives down to
F�#c < F�"c , where quantized sliding is retrieved, as shown
in Fig. 1. The hysteretic behavior observed under the
application of a negative Fext is similar to that for Fext >
0, with corresponding F�#c < F�"c < 0. Viewing the kinks
of our model as the particles of a standard FK model, the
� � 1 case is isomorphic to the fully commensurate �FK �
1 FK static case, where pinning holds for all K’s.
Confirming that, when we counterbalance the average fric-
tional force Fw � �2��vplateau � vw� with an equal and
opposite external force Fext � �Fw such that no net force
acts on the kink lattice, we find that the plateau extends out
to arbitrarily large K; see Fig. 2(a). The observed phe-
nomenology is quite generic: in suitable parameter ranges
we find similar hysteretic plateaus for all values of r� and
r� investigated. Moreover, different choices of r� �
�=�1� r�1

� �, with rational � � 1 lead to plateaus that
also extend to arbitrarily large K. A generic rational � >
1 implies defects in the perfectly commensurate (� � 1)
lattice of kinks, in the form of kinks of the kink lattice—
hierarchical excitations, kinks of kinks—which, being

FIG. 1 (color online). Hysteresis in the vcm � Fext character-
istics for �r�; r�� � ��;�2�. Throughout, our units are m � 1,
a� � 1, F� � 2�U�=a� � 1, K is measured in F�=a�, � in�������������������
mF�=a�

p
, velocities in

�������������������
a�F�=m

p
, and we choose F� �

2�U�=a� � F� [8]. The behavior is shown for fast (vext �
0:1, upper panel) and slow (vext � 0:01, lower panel) drive.
Adiabatic increase and decrease of Fext is denoted by triangles
and circles, respectively. A characteristic multistep feature
appears when decreasing adiabatically Fext. Here � � 0:1 and
K � 4.
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commensurate with the (�) substrate, resist depinning for
arbitrarily large K.

On the contrary, we expect—and find (see Fig. 2(a)) for
� � �—that irrational � should be associated with a
genuine Aubry transition on the fly of the incommensurate
lattice of kinks, with the plateau disappearing at Kdyn

Aubry.

The transition takes place at a finite K � Kdyn
Aubry, where the

width F�"c � F
�#
c of the velocity plateau as a function of

Fext shrinks to zero. Of course, we expect Kdyn
Aubry to be a

complicated function of the original model parameters,
generally not coincident with the value characteristic of
the FK model for �FK � �.

The pinning force (F�"c � Fw) decreases like K�1 for
largeK; see Fig. 2(c). In this limit, the kink lattice becomes
increasingly faint, since the corresponding particle-density
modulation amplitude drops as K�1. Quantitatively, the
small displacements of the particles away from ideal lattice
positions xi � ia0 due to interaction with the (�) potential
are described in terms of a hull function, whose explicit
expression is known [10] for large K	 F�=a� (with
F� � 2�U�=a�). These displaced positions, once substi-
tuted into the U� term of Eq. (1), yield a sinusoidal os-
cillation as a function of the translation vextt of the (�)
substrate relative to the kink lattice. This energy oscillation

corresponds to a force whose maximum amplitude equals
the minimum force that must be applied to the chain to
have the kinks overcome the barrier and initiate sliding.
This critical force per particle amounts to

 F�c � Fw �
A
K
�O�K�2�; A �

�
8

r� � 1

sin2 �
r�

F�F�
a�

;

(3)

and is drawn in Fig. 2(c) for comparison. The ’ 20%
discrepancy with the observed F�c is due to the neglect
of the displacements induced by the (�) potential, which
enhance the kinks’ amplitude in this � � 1 geometry.

The self-pinning at the (�) minima is also at the root of
the bistability found at moderate K: self-enhanced trapped
kinks resist to a large Fext up to F�"c , but as soon as kinks
wash away in the large-Fext unpinned sliding state, Fext

must be reduced to smaller F�#c before kinks reconstruct
and then repin. The transition boundaries F�"c , F�#c , and �v
are nontrivial functions of the parameters. In particular, as
shown in Fig. 2(a), for large K the hysteretic behavior
extends up to K � K
 ’ 135; see power-law fit in
Fig. 2(b). For K � K
, F

�"
c � F�#c � F�c , and the depin-

ning transition is continuous, characterized by a critical
behavior �vcm � vplateau� / �Fext � F

�
c �

1=2. On approach-
ing the critical point K
, the jump �v characterizing the
first-order depinning transition vanishes, and a continuous
transition line originates there. In the moderate-K hyste-
retic regime we find that, in a wide range of parameters,
depinning occurs through a discontinuous jump to a quasi-
free sliding regime Fext >F�"c (see Fig. 3(a)), character-
ized by aperiodic single-particle motion, superposed to a
drift approaching the free-particle limit velocity Fext=�2��.
The reverse route, upon decreasing Fext toF�#c , yields some
insight in the repinning mechanism. Depending on the
values of K and vext, dynamical repinning to the plateau
state takes place through a variety of mechanisms, from
intermittencies with a well defined periodicity, to more
chaotic and irregular jumps. Despite that variety, for inter-
mediate K we consistently observe one or more multistep
sliding regimes as Fext decreases within the [F�#c , F�"c ]
hysteresis window, consistently with the results known
for the sine-Gordon [11] and FK [12] models. Our
intermediate-Fext regime, illustrated in Fig. 3(b), is remi-
niscent of intermittencies representing a dynamic stick-
slip occurring on a local scale, clearly seen by plotting
the particle trajectories in the reference frame that slides
at vplateau. In fact, detailed global analysis of this
intermediate-Fext dynamics, based on simulations with
r� � 1� � (with �� 1) where kinks are well separated,
shows that the kinks pin to the (�) lattice along most of the
chain, with a few kink-antikink defects travelling along the
chain. These defective sections move along the chain at a
characteristic speed depending on the model parameters.
The nature of these depinning mobile defects is reminis-
cent of those found in the ordinary FK model [3].

FIG. 2 (color online). (a) The critical depinning (F�"c , F�#c ) and
repinning (F�#c , F�"c ) forces, as functions of the chain stiffness K,
for �r�; r�� � ��;�2� (i.e., commensurate � � 1, solid sym-
bols, pinning extending to infinitely large K) and for �r�; r�� �
��;�3� (i.e., incommensurate � � �, open symbols). In all
calculations vext � 0:1, � � 0:1. For � � 1: (b) the width F�"c �
F�#c of the bistability region as a function of (K
 � K) (crosses),
compared to a fitted power law F�"c � F

�#
c � B�K
 � K�

�, with
� ’ 2:7, K
 ’ 135; (c) the large-K depinning force, compared to
the expected power law �F�"c � Fw� � AK�1, Eq. (3).
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Depending on K and Fext, single- or multiple-kink defects
arise: transitions between intermediate phases character-
ized by different numbers of traveling-kink defects are
visible in Fig. 1.

In practice, the experimental realization of an equal
force acting on each particle could be provided, for in-
stance, by the inertial forces in a QCM experiment. In
addition, the hysteretic depinning and repinning occurs
even when different tunable parameters are varied adiabati-
cally, for instance, the driving velocity vext (see Fig. 4) as
long as we are in the underdamped limit [13]. Thus, in a
concrete lab experiment, cycling quantities such as vext

should lead to leaving or recovering the plateau state,
similar to cycling Fext. As for the dragging agent, the
typical force that a laser provides in an optical lattice of
alkali atoms is F � 10�9 pN [14]. This is very small, but
we checked that our phenomenology still survives even
when F� is orders of magnitude smaller than F�. Larger
(inertial) forces,m!2a
 10�5 pN per adsorbate atom, are
accessible in a standard QCM oscillating at !=2�

15 MHz with amplitudes a
 100 �A. The sinusoidal varia-
tion of the dragging velocity occurs here between 0 and
�1 m=s on a much longer time scale than the typical
adsorbate vibrational frequencies (
1 THz). The inertial
dragging force couples to the local density fluctuations and

should drag the solitons exactly like a commensurate (�)
slider would do.

As for thermal effects, they favor unpinning, but as long
as kBT is much smaller than the cost � for the creation of
the relevant depinning defects, the physics does not change
much, as shown by numerical simulations of similar mod-
els [15].

Our overall picture confirms a striking similarity of the
dynamical kink-depinning transition of a lubricant under
shear to the usual depinning in static friction, and in the
static FK model, to which the large-K theory of Eq. (3)
establishes a quantitative correspondence. These findings
should also be amenable to experimental verification.
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FIG. 4 (color online). Hysteresis, as vext is cycled, in the
underdamped regime.

FIG. 3 (color online). Time evolution of the positions xi �
vplateau � t of 7 contiguous chain particles. t is measured in units
of

�������������������
ma�=F�

p
. The plots refer to three dynamical regimes

observed along the adiabatic decrease of Fext, at the points
indicated by (3a)–(3c) in Fig. 1: (a) free sliding at Fext �
0:07, (b) dynamic stick slip at Fext � 0:045, and (c) quantized
sliding state at Fext � 0:02. Same parameters as in Fig. 1, with
vext � 0:1.
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