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In a Rayleigh-Taylor instability a dense fluid sits metastably atop a less dense fluid, a configuration that
can be stabilized using a magnetic field gradient when one fluid is highly paramagnetic. On switching off
the magnetic field, the instability occurs as the dense fluid falls under gravity. By affixing appropriately
shaped magnetically permeable wires to the outside of the cell, one may impose arbitrarily chosen and
well-controlled initial perturbations on the interface. This technique is used to examine both the linear and
nonlinear growth regimes for which the perturbation amplitudes, growth rates, and nonlinear growth
coefficients are obtained.
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The general Rayleigh-Taylor (RT) instability occurs
when a density gradient is subjected to an acceleration
by an antiparallel pressure gradient in the presence of
perturbations, i.e., when rP � r� < 0 [1–3], where P is
the pressure and � is the mass density. This occurs, for
example, when a dense fluid is placed above a less dense
fluid in the presence of gravity and then falls when the
interface is perturbed. The RT instability develops in three
stages, beginning with an exponential growth in which
each perturbation mode develops independently and is
well described by linear stability theory [3]. When the
mode amplitude becomes comparable to its wavelength,
nonlinearities cause the growth rate to decline [4–6], with
bubbles of less dense fluid rising parallel to r� and sepa-
rated by narrower spikes of denser fluid traveling in the
opposite direction. Finally, the now large amplitude modes
interact strongly, the scale of the dominant structures in-
creases, fluid interpenetration becomes turbulent, and
memory of the initial perturbations fades or is lost [6–9].
It is these last two stages that receive the overwhelming
bulk of attention, as there are significant inconsistencies
among theory, simulation, and experiment [10]. This is due
in large part to poorly defined initial conditions in experi-
ments, particularly the presence of uncontrolled long-
wavelength perturbations. To date experiments have been
based mainly on physical motion of the cell [5,7,10–15].
These protocols suffer from jitter and not-well-controlled
initial conditions and tend to be poorly suited for establish-
ing initial interface perturbations that involve a specific
single mode or spectrum of modes [13,16].

In this Letter we demonstrate how an extension of our
magnetic levitation technique [17,18] enables us to fine-
tune the initial conditions. We accomplish this by affixing
precisely shaped magnetically permeable materials to the
outside of the fluid cell, which perturb the magnetic force
and thereby the shape of the interface. On turning off the

magnetic field, the total magnetic force disappears, leading
to a purely gravity-driven RT instability with precisely
controlled initial conditions. As a first application, we
measure the amplitude of the initial interface perturbation
and its growth due to an applied single-mode perturbation
as a function of the amplitude of a pair of sinusoidally
shaped magnetically permeable wires.

In our experiments fluid 1 is a moderately strong para-
magnetic mixture of water, 58.6 wt. % MnCl2 � 4H2O,
approximately 1 wt. % surfactant octa(ethylene glycol)
dodecyl ether (‘‘C12E8’’) to reduce surface tension, and a
small amount of rhodamine 6G dye; fluid 2 is weakly
diamagnetic hexadecane, which is immiscible with fluid
1 and of nearly the same refractive index. The interfacial
tension � � �2:6� 0:3� erg cm�2, as determined by the
pendant drop technique, and wetting properties are such
that the meniscus is virtually absent. When placed in a cell,
the lighter hexadecane (�2 � 0:773 g cm�3) ordinarily sits
atop the heavier paramagnetic mixture (density �1 �
1:394 g cm�3), where the Atwood number A �
��1 � �2�=��1 � �2� � 0:29. However, in the presence
of a vertical magnetic field gradient r�H2� [	2:0

107 G2 cm�1 at the interface], the denser fluid 1 resides
above the less dense fluid 2 when j 12�1r�H

2�j> j��1 �

�2�gj; see Fig. 1. Here �1 is the (positive) magnetic
susceptibility of fluid 1 and the susceptibility of fluid 2 is
negligible. On switching off the magnetic force, the layer-
ing becomes unstable in the presence of small, random
perturbations—the large, controlled interfacial perturba-
tions have not yet been applied—and the denser fluid 1
falls to the bottom of the container under uniform gravity.
Figure 2(a) [where (a) refers to the column] shows how the
instability develops as a function of time for these fluids,
with the initial observable growth being that of the fastest
growing mode. In this experiment the cell is constructed of
0.2 cm thick glass, is 15 cm in height, 7 cm in width
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(spanwise, along the y axis), and d � 0:3 cm thick (i.e., the
cell gap along the x axis), and has no observable meniscus
[Fig. 2(a), row i]. Because the characteristic time for
viscous diffusion across the cell [18] tv 	 d

2�=� ��	

0:5 s, where ��	 5 cP is the mean viscosity, the system
can be considered to be in the purely 2D RT regime for
time t & tv. Using the technique of planar laser induced
fluorescence [19], the cell is illuminated from above with a
	0:1 cm thick ‘‘sheet’’ of light, created by passing a
Nd:YaG laser beam at 532 nm through a cylindrical lens.
The light sheet passes through the midplane of the cell,
causing the dye in fluid 1 to fluoresce. Videos of the lower
portion of the cell are collected at 60 frames per second
using a CCD camera. (Simultaneous imaging of both upper
and lower portions of the cell will become possible in the
future with the addition of a second synchronized camera).
On switching off the magnet, the instability passes first
through the linear regime [Fig. 2(a), row ii] with a wave-
length �� � �0:69� 0:05� cm for the fastest growing
mode (denoted by an asterisk), consistent with the predic-
tion of �� � 0:71 cm from linear stability theory (LST)
[3]. (We note that the measured �� values also are nearly
identical for cells of other thicknesses, viz., d � 0:2 and
d � 0:4 cm.) Because of the small wavelength, video
frames at early times have an insufficient number of pixels
to resolve properly the initial growth rate ��, which LST
predicts to be 33:5 s�1. Using several well-resolved im-
ages at later times for which hk=�� * 0:15, where hk is the
perturbation amplitude, we experimentally find �� �
�24� 0:5� s�1; as expected, this is smaller than the LST
prediction because the instability is already transitioning
from the linear to the nonlinear regime, as seen in Fig. 2(a),
rows iii through vi.

Aside from physically agitating the cell to create stand-
ing waves [20]—a technique that severely limits the range
of initial conditions and creates unwanted jitter—there is
no viable extant method for establishing an arbitrary and
controlled initial interface shape. Here we show that the
interface shape can be manipulated by perturbing the mag-
netic field’s spatial profile. We use several pairs of T-304
cold-worked stainless steel wires (diameter � 0:088 cm)
bent into a sinusoidal shape with a period of 2.25 cm and
amplitudes Aw � 0:10 [Fig. 2(b)], 0.15, 0.20 [Fig. 2(c)],
0.25, and 0.30 cm [Fig. 2(d)]. The wire’s relative magnetic
permeability � � �2:6� 0:3�, as measured by balancing
the upward magnetic force against downward gravity. Each
pair of wires, painted black to reduce spurious light, is
affixed to the outside of the cell’s two faces; see Fig. 1. The
front wires can be seen as a silhouette in each image in
Figs. 2(b)–2(d); the rear wires are obscured and not easily
visible. We emphasize that all aspects of the experiments
shown in Fig. 2, including both the fluids and the cell, are
identical, except for the addition of the wires in Figs. 2(b)–
2(d). [Note that the wires are placed so that the fluid inter-
face is at the wires’ midpoint along z. The apparent vertical
displacement in Fig. 2 is an illusion due to parallax.] On
application of an external field the fluid interface is per-
turbed very slightly by the spanwise inhomogeneous mag-
netic force induced by the wires [Figs. 2(b), row i, 2(c),
row i, and 2(d), row i], where the period of the interface
instability � � 1:12 cm is exactly one-half that of the

FIG. 2. Images of spike growth vs time in seconds, where t �
0 is the time at which the magnet current first begins to decrease.
Column (a): no wire; (b)–(d): wires of amplitude Aw � 0:1, 0.2,
and 0.3 cm, respectively. The scale is shown in the upper left
panel.
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FIG. 1 (color online). Cartoon of experimental setup. Note that
wires are attached to the outside of the cell and that the x axis
view is expanded for clarity. The arrow indicating the direction
of r�H2� applies only in the absence of the wires.
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wires. � can be understood by noting that, even at the cost
of surface and buoyancy energies, the magnetic fluid ac-
cumulates near regions where the wire’s projection crosses
the interface, resulting in a perturbation of the interface
with half the wire’s period. Although too small to image,
the amplitude hk0 of the initial perturbation at wave vector
k can be estimated. The amplitude hk for the early growth
can be derived from the equation d2hk=dt2 � �2hk � 0,
where � is approximately proportional to A1=2 [3].
However, because the magnetic force decays exponentially
with a time constant 	m 	 0:065 s, the effective Atwood
number 	A�1�e�t=	m�. Thus, d2hk=dt

2��2�1�
e�t=	m�hk�0. The solution hk�hk0J�
�
e

�t=2	m�=
J�
�
�, where J�
 is a Bessel function of the first kind
of order �
 and 
 � 2�	m, is equal to hk0 exp��t� in the
limit 	m ! 0. Fitting hk to the two earliest resolvable
interface amplitudes hk�t� (such that hkk	 0:5) for each
wire amplitude Aw, along with the LST values � �
33:0 s�1 (cells with wires, k � 5:6 cm�1), we determine
hk0 (Table I) and the dimensionless quantity khk0 (inset in
Fig. 3). These values are considerably larger than those that
occur without the perturbing wires (Table I), where we use
the LST value �� � 33:5 s�1 (cell without wires, k� �
9:1 cm�1). Additionally, the data indicate that hk0 in-
creases smoothly with Aw. When the field is switched
off, Fig. 2(b), rows ii through vi, Fig. 2(c), rows ii through
vi, and Fig. 2(d), rows ii through vi show the evolution of

the perturbations. (In fact, data were collected for a total
time t	 30=�� s before the spikes reached the bottom of
the cell.) Several features are apparent. First, as noted
above, the wavelength of the instability is half that of the
wire. Second, spikes arising from initially larger amplitude
perturbations of the fluid interface in Fig. 2 grow to corre-
spondingly longer lengths (i.e., larger hk) before the insta-
bility evolves into the late time regime. This behavior
occurs because of the larger initial amplitudes hk0: the
imposed mode can grow significantly before interaction
with other modes becomes important. Figure 4(a) shows
the advance hk vs time of the spike front for the Aw �
0:3 cm amplitude wire [Fig. 2(d)], as defined by the maxi-
mum extent to which at least 5% of the denser fluid has
fallen. Figure 4(b) shows its velocity dhk=dt, and Fig. 4(c)
shows the instantaneous growth coefficient �s, defined as
�dhk=dt�2=4Aghk, where g is the gravitational acceleration
[21,22]. (Values for �s for all runs are collected in Table I.)
�s and its bubble counterpart ab have been the subject of
intense interest [10,23], as there are significant discrepan-
cies between experiments, which have been plagued by
not-well-controlled initial conditions, and calculations,
which depend critically upon the initial perturbation spec-
trum and often are smaller than experimental values. For
example, calculated values for the growth rate are 	0:03
[23,24], 0.025 to 0.06 [25], 0.033 to 0.06 [22], and 0.06
[26]. We note from Fig. 4(c) that �s 	 �0:07� 0:02� dur-
ing the self-similar growth period t � 0:3 to t � 0:45 s,
after which it decays as the velocity has reached a terminal
value �dhk=dt�t 	 11 cm s�1 [Fig. 2(d), row iii]. Although
we expect—and observe—a terminal velocity for small A

TABLE I. Interface perturbation amplitude hk0, terminal velocity, and growth coefficient for different wire amplitudes Aw.

Aw (cm) No wire 0.1 0.15 0.2 0.25 0.3

104 
 hk0 (cm) 0:043� 0:008 0:4� 0:1 0:9� 0:2 1:6� 0:4 3:9� 0:9 6� 1
�dhk=dt�t (cm s�1) 8� 0:5 11� 1 11� 1 10� 2 10� 1 11� 1

�s 0:065� 0:01 0:06� 0:02 0:07� 0:01 0:06� 0:02 0:06� 0:01 0:07� 0:02

FIG. 3. Main figure: jFwire
!

� F0
!

j=jF0
!

j in the midplane of the
cell for Aw � 0:25 cm. The wide gray curve is the projection of
wire into the midplane, the dotted line is the fluid interface at
t � 0, and the solid curve is the actual fluid interface measured
at t � 0:265 s. The force, which affects fluid 1 due to its large
�1, is largest near the wire’s crossing points and results in a
collection of fluid 1 at the crossing points. Inset: Dimensionless
interface perturbation amplitude khk0 vs wire amplitude Aw.
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FIG. 4. Growth data vs time for a cell with a wire of amplitude
Aw � 0:3 cm. (a) The position of the front, (b) the velocity of the
front, and (c) the instantaneous growth coefficient �s.
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when only a single mode is present [14,27], we believe that
the observed terminal velocity’s origin lies elsewhere. That
the crossover from self-similar growth to terminal velocity
always occurs in the neighborhood of t	 0:5 s, which
corresponds to the diffusion time tv for the surface vorticity
layer, suggests that the terminal velocity is due in part to
the instability’s transitioning from the 2D RT to the Hele-
Shaw regime [18]. We emphasize that the initial linear
growth regime and most of the subsequent self-similar
growth regime, both taking place before vorticity has
reached the midplane of the cell, should thus be very little
influenced by friction at the glass walls. It also has been
suggested that fluctuations result in a coarsening of the
spikes and droplet break off, leading to Stokes-like fric-
tional flow with a terminal velocity [26].

We now calculate the static force on the fluids in the
presence of the wires. In the absence of current a scalar
magnetic potential ’ may be introduced into Laplace’s

equation r � ��r’� � 0, where H
!
� �r’. A commer-

cial finite-element package, FLEXPDE, is used on a compu-
tational domain of 3:0
 2:25
 4:0 cm, with periodic
boundary conditions. In the model the wires are sinu-
soidally shaped with Aw � 0:25 cm, period 2.25 cm, rela-
tive permeability � � 2:6, and square cross section, such
that the wires’ cross-sectional area is equal to that in the
experiment. Dirichlet conditions are applied at the pole

pieces. The total magnetic force Fwire
!

�/ �H
!
� r�H

!
 with

the wires present minus the force F0
!

in the absence of the

wires, scaled by F0
!

, at the cell’s midplane is plotted in
Fig. 3; also shown is the experimental interface at t �
0:265 s. It is clear that the wires produce a force on
paramagnetic fluid 1 that is directed toward the wire’s
crossing points with the interface. Thus the overall energy,
including magnetic, gravitational, and surface tension, can
be reduced if the paramagnetic (upper) fluid collects near
the wire-fluid interface crossings, lowering the interface
near the crossings and raising it near the wires’ extrema.
For small wire amplitude Aw the shape of the interface is
very nearly a single sinusoid, as seen in Fig. 3. With
increasing Aw, however, contributions from higher har-
monics of k begin to emerge, suggesting that hk0 can be
increased more efficaciously by increasing � or the wire
diameter.

To summarize, we have studied the growth of an im-
posed single-mode perturbation. One also can create an
arbitrary spectrum of initial perturbation modes, requiring
the solution of the inverse problem in which the appropri-
ate magnet current and wire parameters need to be deter-
mined to achieve the desired initial perturbation. Besides
demonstrating a powerful technique for RT experiments
with arbitrary initial conditions, this work has yielded a
precise measurement of the growth coefficient �s, inde-

pendent of wire amplitude, for a precise set of experimen-
tal conditions: a moderately large Atwood number
(A � 0:29) and a jitter-free single-mode initial perturba-
tion, two elements that would have been difficult to achieve
by other means. Clearly, the ability to manipulate the initial
interface shape facilitates many heretofore inaccessible
investigations involving controlled initial conditions.
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