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We present measurements of fluid particle accelerations in turbulent water flow between counter-
rotating disks using three-dimensional Lagrangian particle tracking. By simultaneously following mul-
tiple particles with sub-Kolmogorov-time-scale temporal resolution, we measured the spatial correlation
of fluid particle acceleration at Taylor microscale Reynolds numbers between 200 and 690. We also
obtained indirect, nonintrusive measurements of the Eulerian pressure structure functions by integrating
the acceleration correlations. Our measurements are in good agreement with the theoretical predictions of
the acceleration correlations and the pressure structure function in isotropic high-Reynolds number
turbulence by Obukhov and Yaglom in 1951 [Prikl. Mat. Mekh. 15, 3 (1951)]. The measured pressure
structure functions display K41 scaling in the inertial range.
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Fluid particle acceleration is an important quantity in
turbulent flows [1]. For example, it plays a significant role
in the formation of cloud droplets in the atmosphere [2]. In
recent years, advances in the study of the statistics of
acceleration have been made through the development of
Lagrangian experimental techniques [3,4] and the use of
direct numerical simulations (see, e.g., Refs. [5–7]). Using
silicon-strip detectors operating at frequencies as high as
70 kHz, La Porta and co-workers [4] were able to follow
tracer particles in a water flow at Taylor microscale
Reynolds numbers up to R� � 103. Fluid particle acceler-
ations were obtained from the measured trajectories. Their
results revealed the highly intermittent nature of accelera-
tion and also showed the necessity of sub-�� temporal
resolution for obtaining accurate acceleration measure-
ments, where �� is the Kolmogorov time scale, the smallest
time scale in turbulence. In later studies, the same tech-
nique was used to investigate the Lagrangian properties of
acceleration following a fluid particle [8]. Because of the
one-dimensional nature of the silicon-strip detectors, how-
ever, only one fluid particle could be followed at a time.
Consequently, the spatial properties of acceleration were
not explored in these previous studies. In other particle
tracking experiments, digital cameras were used to record
the motion of tracer particles and multiparticle statistics
were obtained [9,10]. These experiments, however, were
limited to flows with small R� because of the slower
recording frequency of the cameras. Very recently, advan-
ces in camera technology have provided the opportunity of
measuring the acceleration of multiple tracer particles
simultaneously in high-Reynolds number turbulent flows
[11]. In this Letter, we present the first direct experimental

measurement of the spatial correlations of acceleration in
turbulent flows with 200 � R� � 690.

Another important quantity in high-Reynolds number
turbulence that is not clearly understood is pressure. It
has been shown that the clustering of inertial particles in
turbulence is related to the scaling properties of the pres-
sure field [12]. It is, however, extremely difficult to mea-
sure pressure in turbulent flows nonintrusively. Ould-Rouis
et al. [13] reported that, in the inertial range, the pressure
structure functions computed from the fourth order longi-
tudinal velocity structure functions scale as predicted by
Kolmogorov’s K41 theory [14–16] when R� is moderately
high (R� � 230). However, Hill and Boratav [17] argued
that very large Reynolds numbers are needed to observe
K41 scaling and the assumptions made by Ould-Rouis
et al. result in large uncertainties in the calculated pressure
structure function. Pressure spectra obtained from numeri-
cal simulations [5,12,18] suggested that the K41 pressure
spectrum can be observed only at R� > 600. The spectra
obtained from direct pressure measurements in turbulent
jets by Tsuji and Ishihara [19] seem to support this con-
clusion. In this experiment, however, the effect of Taylor’s
frozen flow hypothesis on the pressure spectra has not been
fully evaluated.

In high-Reynolds number turbulence, the acceleration is
mostly determined by the pressure gradient, and the vis-
cous term may be ignored [20]. Under this assumption,
there exist analytical relations between the spatial correla-
tions of acceleration and the Eulerian pressure structure
function [15,16]. By exploiting such relations, we obtain
an indirect but nonintrusive measurement of the pressure
structure functions in high-Reynolds number turbulence.
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Our measurements are in good agreement with the predic-
tions of Obukhov and Yaglom based on K41.

In high-Reynolds number flows, the spatial correlation
of fluid particle acceleration is dominated by the Eulerian
pressure gradient correlation. Hence,
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In homogeneous, isotropic turbulence, this relation reduces
to [15]
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where RLL�r� and RNN�r� are the longitudinal and trans-
verse acceleration correlations, respectively, and ��r� �
h	p�x� r� 
 p�x��2i � ��r� is the Eulerian pressure
structure function. Therefore, once either ��r� or Rij�r�
is determined, the other can also be obtained. It should be
emphasized that Eqs. (2) hold in homogeneous, isotropic
turbulence at high-Reynolds numbers. The only simplifi-
cation invoked in deriving these equations is the neglect of
a viscous contribution to acceleration.

In their work, Obukhov and Yaglom used a further
assumption that the components of the velocity gradient
are drawn from a multidimensional Gaussian distribution
[21,22]. Under this hypothesis, ��r� in homogeneous,
isotropic turbulence satisfies
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where ��r� can be written in terms of the derivatives of the
longitudinal velocity structure function DLL�r�:
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An equation for DLL can be obtained from the Kármán-
Howarth equation [23] as
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dDLL

dr
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where S is the structure function skewness [24]. Obukhov
and Yaglom [15] assumed that S is constant for all r, and so

it can be related to the Kolmogorov constant C2 for the
structure function DLL�r� as jSj � �4=5�C
3=2

2 and the
value of C2 � 2:13 is well known from experiments [25].
Upon solving Eq. (5) numerically for DLL�r�, Eq. (3) is
solved for ��r� using Green’s functions; RLL�r� and
RNN�r� are then obtained from Eqs. (2).

We carried out 3D Lagrangian particle tracking (LPT)
experiments in a von Kármán water flow between counter-
rotating disks, as described in detail previously [11,26].
Here, we report measurements from four experiments with
R� ranging from 200 to 690. The relevant parameters of the
flow and the experiments are shown in Table I. All mea-
surements were done in the same apparatus described in
Ref. [4], except for the R� � 460 experiment, which was
carried out in a new apparatus with a similar geometry but
a different disk propeller. In the R� � 460 experiment, we
used the Phantom v7.2 cameras from Vision Research Inc.,
which are capable of recording at 37 000 frames per second
at a resolution of 256� 256 pixels, nearly a 40% increase
in frame rate compared to the v7.1 cameras used in the
other experiments. Therefore, the R� � 460 experiment
has the highest temporal resolution among the four experi-
ments reported here.

Figure 1 compares the acceleration probability density
function (PDF) measured in the R� � 460 experiment with
the PDF measured in Ref. [28] at R� � 690 using silicon-
strip detectors. (We note that there is possibly a weak
dependence of acceleration PDF on the Reynolds number
[29]. Previous experiments, however, indicate that the
dependence is so small that within experimental uncer-
tainty, the measured acceleration flatness is nearly a con-
stant over the range 285 � R� � 970 [4].) It can be seen
that with a temporal resolution comparable to the silicon-
strip detector measurement, where the sampling frequency
is 65 frames per ��, the PDFs measured with cameras are
in remarkable agreement with the silicon-strip detector
data. Even the fourth moment agrees well, as shown in
the inset to Fig. 1. The spatial resolution in the measure-
ment with cameras, 40 �m=pixel, is significantly worse
than that of the silicon-strip detector measurement
(8 �m=pixel). The agreement between the two measure-
ments, however, suggests that using multiple cameras to
determine the 3D particle position results in better accu-

TABLE I. Parameters of the experiments. u0 is the root-mean-square velocity. " is the turbulent energy dissipation rate per unit mass
and is measured from the inertial-range scaling of the second order Eulerian velocity structure functions, as shown in [27]. The Taylor
microscale Reynolds number is then defined as R� � �15u04="��1=2. L � u03=" is the integral length scale. � and �� are the
Kolmogorov length and time scales, respectively. Nf is the frame rate of the cameras, in frames per ��. The measurement volume is
nearly a cube in the center of the tank, and its lateral size is given in the units of �. �x is the spatial discretization of the recording
system. The spatial uncertainty of the position measurements is roughly 0:1�x. Ns is the total number of acceleration measurements.

R� u0 (m=s) " (m2=s3) L (mm) � (�m) �� (ms) Nf (frames=��) meas. vol. (�3) �x (�m=pix) Ns

200 0.035 7:2� 10
4 61 194 37 37 100� 100� 100 80 2:5� 107

350 0.11 2:0� 10
2 67 84 7.0 35 300� 300� 300 50 9:0� 107

460 0.25 0.28 56 43 1.9 69 240� 240� 240 40 3:3� 107

690 0.42 1.2 62 30 0.90 24 670� 670� 670 80 8:5� 107
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racy than the one-dimensional silicon-strip detector
measurements.

Since we follow the motion of O�102� tracer particles at
a time, we can obtain Eulerian statistics from the cloud of
particles (and their velocities and accelerations) at any
instant. In Fig. 2, we compare the longitudinal and trans-
verse acceleration correlation coefficients measured at dif-
ferent R� with the Obukhov-Yaglom predictions, as
obtained from Eqs. (2). It can be seen from Fig. 2(a) that
the predictions agree well with the experimental data. As
R� increases, the agreement between the predictions and
the measurements increases. This is not surprising given
that the viscous contribution to acceleration is neglected in
the theoretical predictions.

At large separations, the predicted acceleration correla-
tions approach simple asymptotic scaling laws [15]:

 RLL�r� 

2C2

2

9
"3=2�
1=2�r=��
2=3; (6)
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2

3
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Figure 2(b) compares Eqs. (6) and (7) with experimental
data. There are small but appreciable discrepancies be-
tween the prediction and the measurements, which may
be caused by the finite measurement volume and/or may
reflect the need for still larger separations to see the
asymptotic behavior. Another possible reason for the dis-
crepancy is that our flows are not isotropic. We observe
anisotropy in acceleration even at the largest R� investi-
gated, although the anisotropy decreases with increasing
R� [4].

We obtain ��r� by numerically integrating the experi-
mentally measured RNN�r� using Eq. (2). As already men-
tioned before, this equation holds in homogeneous,
isotropic turbulence at high-Reynolds numbers where the
viscous contribution vanishes.

In Fig. 3, we compare the Obukhov-Yaglom prediction
obtained from Eqs. (3)–(5) with measurements obtained
from the acceleration correlations. We plot the normalized
pressure structure functionDp�r� � ��r�=�2�". The mea-
sured data and the predictions are in good agreement over
the range of separations accessible in the experiments. K41
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FIG. 2 (color online). Comparison of the measured accelera-
tion correlation functions with the Obukhov-Yaglom prediction
[15] for (a) small separations and (b) large separations. The
dashed and solid lines are the predicted longitudinal and trans-
verse correlation functions, respectively. The symbols corre-
spond to measurements from LPT data at different Reynolds
numbers. Filled symbols are RLL and open symbols are RNN .
4—R� � 200, 5—R� � 350, �—R� � 460, and �—R� �
690.
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FIG. 1 (color online). Measured standardized acceleration
a� � a=ha2i1=2. The symbols are data from the LPT experiment
at R� � 460: � and � are the two measurements of the radial
component, and � are the axial component of acceleration. The
solid lines are the previous measurement of the radial component
of acceleration using silicon-strip detectors in the same appara-
tus at R� � 690 [28]. The inset shows a�4P�a��, the PDF of a�

weighted by a�4.
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inertial-range scaling can be obtained from the limiting
case of r� � in the prediction of ��r�, yielding Dp�r� �
�r=��4=3, which is also plotted in Fig. 3. This scaling law is
close to the experimental data in the inertial-range. For
comparison, the r2=3 scaling law, as suggested by previous
simulations at relatively low R� [5,12,18], is also shown in
Fig. 3. As can be seen, all experimental data are much
closer to the K41 scaling rather than r2=3 scaling, and there
is no appreciable change of slope over the range of 200 �
R� � 690. As shown for the case of Lagrangian velocity
[30], the extent of the nominal inertial range measured
from the spectrum or from the structure function can be
very different. This subtlety could account for the differ-
ence between our experimental results and previous inves-
tigations, in which the pressure spectra were studied.

In summary, we simultaneously followed the trajectories
of multiple passive tracer particles in turbulent water flows
with 200 � R� � 690. The accuracy of the accelerations
measured from the trajectories is comparable to previous
single-particle measurements. We obtained spatial accel-
eration correlations from the multiparticle measurement
and used the measured acceleration correlations to com-
pute pressure structure functions from a relation that holds
at high-Reynolds numbers. We compared the measure-
ments with theoretical predictions by Obukhov and
Yaglom [15] and found that the predictions of both the
acceleration correlations and the pressure structure func-
tions are in good agreement with the experimental data. We
also observed K41 inertial-range scaling in the measured
pressure structure functions over the range of Reynolds
numbers investigated.
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FIG. 3 (color online). Comparison of the measured pressure
structure functions with the Obukhov-Yaglom prediction [15].
The solid line is the prediction, and the dashed and dash-dotted
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symbols are measurements from LPT data at different R�: 4—
R� � 200, 5—R� � 350, �—R� � 460, and �—R� � 690.
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