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We propose a method to discover couplings in multivariate time series, based on partial mutual
information, an information-theoretic generalization of partial correlation. It represents the part of mutual
information of two random quantities that is not contained in a third one. By suitable choice of the latter,
we can differentiate between direct and indirect interactions and derive an appropriate graphical model.
An efficient estimator for partial mutual information is presented as well.
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The analysis of coupling between two or more systems
is of general interest, for instance in the analysis of spatial-
temporal systems (lattices of coupled oscillator, earth at-
mosphere, electrical brain activity et al.). If we have no
possibility to manipulate these systems, we have to restrict
our analysis on some observations (time series). In a some-
how naive way coupling could be measured by cross
correlation or mutual information (MI), where the latter
refers also to nonlinear statistical dependencies. However,
this may be misleading in coupling and causality analysis.

Consider, for example, three systems forming a causal
chain: The first system should operate autonomously and
couple to the second, and the latter to the third system. In
this case a pairwise mutual information analysis would
yield dependencies also between the first and third system,
and we could not decide whether this coupling is made
directly or mediated by the second one. A well-known
method to overcome this problem is to consider partial
correlation [1]. Partial mutual information as proposed
here has the same intention, but it is a more general
approach because it relates also to nonlinear dependencies,
and it needs no explicit modeling. It represents the infor-
mation between two observations that is not contained in a
third one. In this way we can discover the real underlying
coupling structure as will be shown afterwards in the
example of coupled Lorenz systems.

In general, our method works if the underlying processes
have a nonvanishing source entropy (be it stochastic or
chaotic), and one process should not be a function of the
others, to guarantee that at least a part of source entropy is
individual to each process. In practice this is typically
fulfilled because of omnipresent dynamical noise.

For a recent attempt in this field we refer to [2], which is
based on a phase analysis. Closest to our approach are that
of Schreiber [3] and Paluš et al. [4], who address couplings
of bivariate time series. Our proposal is more closely
related to the statistical concept of partialization, and it
addresses any multivariate time series. Most important, we
also present an efficient estimator, Eq. (6), which makes
our concept rather practical.

I. Basic definitions.—For a discrete random variable X,
with probabilities fpxg of outcomes fxg, Shannon entropy is

defined by H�X� � �
P
xpx lnpx (e.g., [5]). As we use a

natural logarithm, entropies are measured in units of nit.
MI of two random variables X and Y is given by I�X; Y� �
H�X� �H�Y� �H�X; Y�, where H�X; Y� is obtained
from the joint distribution fpxyg of (X, Y). MI is (i) sym-
metric, I�X; Y� � I�Y; X�, (ii) bounded, 0 � I�X; Y� �
minfH�X�; H�Y�g, where I�X; Y� � 0 only if X and Y are
independent, and (iii) I�X; Y� � H�Y� only if Y is a func-
tion of X.

Now, consider a third variable Z, and take the part of
I�X; Y� that is not in Z (Fig. 1). We call it partial mutual
information (PMI) [6],

 I�X; YjZ� � H�X; Z� �H�Y; Z� �H�Z� �H�X; Y; Z�:

(1)

In terms of joint probabilities fpxyzg of (X, Y, Z), and the
corresponding marginal probabilities px�z �

P
ypxyz,

p�yz �
P
xpxyz, p��z �

P
xypxyz, we get

 I�X; YjZ� �
X
xyz

pxyz ln
pxyzp��z
px�zp�yz

:

PMI is symmetric under the same condition Z,
I�X; YjZ� � I�Y; XjZ�. We have 0 � I�X; YjZ�, where
zero is obtained only if X and Y are independent under

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
������������������

�������������
�����������
����������
���������
��������
�������
�������
������
������
������
�����
�����
�����
�����
�����
����
����
����
����
����
����
����
����
����
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
����
����
����
����
����
����
����
����
�����
�����
�����
�����
������
������
������
�������
�������
��������
��������
���������

����������
������������

��������������
��������������������

������������������������������������������������������� ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ �

�

�

�

�

�
�
�
�
�
�
�
�
�
��

��
��

����
�������������

�
�
�
�
�
�
�
�
�
�

�

�

�

�

�

�

�

�

�
�
�
�
�
�
�
�
�
�
� � � � � � � � � � � � � � � � �

� �
� �
� �
�
�
�
�
�
�
�
�
�
�

�

�

�

�
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���������
������
�����
�����
����
����
����
���
���
���
���
���
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
���
���
���
���
���
����
����
�����

�����
������

��������
������������

�����������
H(X) H(Y )

H(Z)

I(X, Y |Z)

FIG. 1. Partial mutual information I�X; YjZ� (light shaded)
selects the part of mutual information I�X; Y� (all shaded) which
is not in Z.
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condition Z, i.e., if �pxyz=p��z� � �px�z=p��z��p�yz=p��z� for
all x, y, z. This is the case, e.g., if X or Y is a function of Z.
We note that it might be that I�X; YjZ�> I�X; Y� which is
not obvious from the diagram Fig. 1. (Partial correlation
might also be larger than simple correlation).

In the continuous case, where we have a distribution
density p�x; y; z� of (X, Y, Z), with the marginal densities
p�x; �; z�, p��; y; z�, and p��; �; z�, we get

 I�X; YjZ� �
Z
p�x; y; z� ln

p�x; y; z�p��; �; z�
p�x; �; z�p��; y; z�

dxdydz: (2)

Later on we will consider only continuous random varia-
bles. In this case, the term

 h�X� � �
Z
p�x� lnp�x�dx (3)

is called differential entropy of any random variable Xwith
density p�x�. Then we can write PMI (2) also in terms of
differential entropies,

 I�X; YjZ� � h�X; Z� � h�Y; Z� � h�Z� � h�X; Y; Z�: (4)

Continuous PMI is invariant under strictly monotonic
transformations which makes it robust against possibly
nonlinear distortions of the time series. This property
does not hold for the usual correlation.

If the condition Z is irrelevant, i.e., for p�x; y; z� �
p�x; y; ��p��; �; z�, PMI (2) is equal to MI,

 I�X; Y� � h�X� � h�Y� � h�X; Y�: (5)

II. Estimation.—The derivation of adequate estimators
for PMI (2) is a crucial but nontrivial task. For our pur-
poses, the three time series fxtg, fytg, and fztg are consid-
ered as finite realizations of underlying stationary ergodic
processes fXtg, fYtg, and fZtg, respectively. As PMI is a
functional of high-dimensional joint probability distribu-
tions, we could take the empirical distributions for its
estimation, any simple box-counting algorithm [4], or a
kernel estimator [3]. However, usually the series have to be
extremely long to get good estimates in this way. This
causes serious limitations for practical use. An estimator
for MI (5) based on kth nearest neighbor statistics has been
proposed elsewhere [7]. We now generalize it to an esti-
mator for PMI (2).

For each vector vt � �xt; yt; zt�, t � 1; 2; . . . ; T, and a
fixed integer k with 1 � k	 T, we determine the distance
"k�t� to the kth nearest neighbor. That means, in fvt
 g with
t
 � 1; . . . ; T, t
 � t, are just k� 1 points at distance
strictly less than "k�t� and N � k� 1 points at distance
strictly larger than "k�t�. Here we have to use maximum
norm, i.e., jj � jj � maxfjj � jjx; jj � jjy; jj � jjzg, where jj � jjx,
jj � jjy and jj � jjz could be any norm, but we use maximum
norm as well. Now we switch to the marginal vectors wt �
�xt; zt�, t � 1; 2; . . . ; T, and determine for each t the num-
ber of points in fwt
 g with distance strictly less than "k�t�,

 Nxz�t� � #ft
 � t: jjwt
 � wtjj< "k�t�g:

Note that k � Nxz � 1. In the same way we determine
Nyz�t� and Nz�t� using marginal vectors (yt, zt) and zt,
respectively. Now, our PMI estimator is given by

 Î�X; YjZ� � hhNxz�t� � hNyz�t� � hNz�t�i � hk�1; (6)

with the negative Nth harmonic number hN �
�
PN
n�1 n

�1, and the time average h. . .i � 1
T

PT
t�1 . . .

Note the beautiful analogy to (4). If we disregard the
condition, that means Z � ;, we have Nz � T � 1, Nxz �
Nx and Nyz � Ny. This yields the estimator for MI,
I�X; Y� � I�X; Yj;�, as derived in [7],

 Î�X; Y� � hhNx�t� � hNy�t�i � hT�1 � hk�1: (7)

A detailed derivation of formula (6) is given in [8]. We
have numerical evidences that this PMI estimator is much
more efficient than any estimator based on box-counting.
We note that in [9] an estimator of differential entropy (3)
was proven to be asymptotically unbiased and consistent if
(i) the observations are statistically independent, and
(ii) some rather general conditions on the density p�x�
are fulfilled. Our PMI estimator (6) is based on this differ-
ential entropy estimator. Hence it fulfils at least the same
properties as each estimator for differential entropy on the
right side of (4). However, in practice of time series analy-
sis, these conditions cannot be checked because the den-
sities are unknown.

III. Example: Correlated Gaussian Distribution.—In the
following we want to demonstrate the properties of the
PMI estimator (6) in the case of Gaussian distributions,
where we are able to calculate PMI analytically. For a
Gaussian distributed random variable X�N d�m;C�,
with the mean valuesm and covariance matrix C, it applies

 h�X� �
d
2
�1� ln2�� �

1

2
ln detC: (8)

FIG. 2. Bias of the partial mutual information estimator (6) in
dependence of parameter k for T � 1000 samples of the six-
dimensional Gaussian distribution with covariance c � 0:9,
averaged over 100 trials. The exact value is given analytically
by I � 0:0195; . . . , error bars represent the standard deviations
of the trials.

PRL 99, 204101 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
16 NOVEMBER 2007

204101-2



We now consider the random variable �X; Y; Z3; . . . ; Zd� �
N d�0; C� with covariance matrix Cij � 1 for i � j, Cij �
c for i � j, jcj< 1, and i, j � 1; . . . ; d. The PMI I �
I�X; YjZ3; . . . ; Zd� can easily be calculated by using
Eqs. (4) and (8). We estimate PMI using Eq. (6) for T �
1000 samples. Figure 2 shows the corresponding bias hÎi �
I, averaged over 100 trials for varied k. In general the bias
increases with k, while the standard deviation decreases.
Hence for T � 1000 a well balanced choice would be k �
20 . . . 30.

IV. Example: Coupled Lorenz Systems.—In the follow-
ing we test our method in the case of three coupled Lorenz
systems �i: � _Xi�t�; _Yi�t�; _Zi�t��, described by the differen-
tial equations

 

_Xi�t� � ��Yi�t� � Xi�t��;

_Yi�t� � rXi�t� � Yi�t� � Xi�t�Zi�t� �
X
j�i

KijY
2
j �t� �ij�;

_Zi�t� � Xi�t�Yi�t� � bZi�t�; (9)

with i, j � 1, 2, 3. We integrated these equations numeri-
cally, applying a fourth order Runge-Kutta method with
integration step 0.003, but we recorded only every 100th
point leading to time step �t � 0:3. We cut away transient
dynamics at the beginning, and take standard parameters
� � 10, r � 28, b � 8=3. In the uncoupled case Kij � 0,
the systems are autonomic and perform chaotic motions
near the well-known Lorenz attractor. Coupling is realized
via the quadratic Yj components at delays �ij, controlled
via Kij. Here we consider the case of a causal chain: K12 �

K23 � 1 and Kij � 0 otherwise. The corresponding delays
are set to �12 � 10 and �23 � 15 time steps. We consider
the three time series fyi;tg � fYi�t � �t�g, t � 1; 2; . . . ; T �
1000. However, for our following analysis it is only im-
portant to have at least one series of each subsystem �i. As
the autonomic systems are chaotic and numerical round off

errors act like dynamical noise, we can suppose that at least
a part of source entropy is individual to each series.

The question now is, can we derive the complete cou-
pling structure from an analysis of the corresponding time
series alone? We start our analysis with the pairwise cross
MI functions,

 Iij��� � I�Yi;t; Yj;t���; i � j; (10)

applying the estimator (7) for k � 20 (see comment [10]).
They suggest some very significant dependencies with
delays �12 � 10, �13 � 27, and �23 � 15 [Figs. 3(a)–
3(c)], respectively. These delays are all positive. Our idea
of causality is that there is first the cause and then the
effect. Hence, from this analysis we could conclude that
there are couplings �1 ! �2, �1 ! �3, and �2 ! �3.
There might be also a weak backward coupling �2 !
�1, because there are also significant dependencies for
some negative � [Fig. 3(a)]. Graphical models which are
consistent by pairwise MI analysis are summarized in
Fig. 4. Auto dependencies in the series lead to a broadening
of the peaks in the cross MI functions, which indicate
dependencies also for negative � as in the case of
Fig. 3(a). Having in mind that dependencies between un-
coupled systems can be, e.g., due to a common driver
system, we cannot surely conclude the true global struc-
ture, Fig. 4(d), of coupling from simple pairwise MI
analysis.

In order to derive the true one we will now partialize out
the influence of the third system when analyzing the de-
pendencies between the others. Instead of cross MI func-
tion Iij��� we ask now for the MI of Yi;t and Yj;t�� which is
not in f. . . ; Yl;t�1; Yl;t; Yl;t�1; . . .g, where i, j, l � 1, 2, 3, all
different. This is our PMI (2), for condition Z being
1-dimensional. In practice, we have to restrict to a finite
dimensional delay embedding vector

 Yl;t�#l � �Yl;t�#l;1 ; Yl;t�#l;2 ; . . . ; Yl;t�#l;D�;

FIG. 3. From pairwise mutual information we would conclude the Lorenz systems to be pairwise unidirectionally coupled with
delays �12 � 10, �13 � 27 and �23 � 15. Indeed the interdependence between �1 and �3 is indirect due to they are both coupled to �2.
This can be seen from the vanishing partial mutual information function Î13j2���.
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with time comb #l � �#l;1; . . . ; #l;D�. We therefore con-
sider PMI functions

 Iijjl��� � I�Yi;t; Yj;t��jYl;t�#l�: (11)

The comb #l is chosen such that (i) Yl;t�#l is maximally
statistically related to Yi;t, and (ii) the components of
Yl;t�#l are minimally redundant. A relevant comb fulfilling
the first condition is given by the � values where the MI
function Iil��� significantly differs from zero.

We start with considering the MI function between �1

and �2, I12��� [Fig. 3(a)]. It shows significant dependen-
cies at �12 � 10. From I13��� [Fig. 3(b)] we read off
dependencies at �13 � 27. Hence we choose #3 �
�24; 25; . . . ; 30�, symmetrically around �13. From the re-
sulting PMI function I12j3��� [Fig. 3(d)] we now clearly
detect a unidirectional coupling �1 ! �2 with a sharp
peak at delay �12 � 10. So there cannot be an edge from
node �2 to �1 in the corresponding graphical model
[Figs. 4(a)–4(c)].

In a similar way we analyze the coupling between �2

and �3. For PMI I23j1��� [Fig. 3(f)] we take time comb
#1 � ��7; . . . ;�13� read from [Fig. 3(a)], having in mind
I21��� � I12����. Thus we detect a unidirectional coupling
�2 ! �3 from the sharp peak of I23j1��� at delay �23 � 15.
So there must be an edge between the corresponding
nodes; i.e., graph (b) in Fig. 4 must be wrong.

Finally we analyze the coupling between �1 and �3. For
PMI I13j2��� [Fig. 3(e)] we take time comb #2 �
�7; . . . ; 13� read from [Fig. 3(a)]. I13j2��� vanishes in con-
trast to I13��� [Fig. 3(b)]. This shows, that there is no direct
interaction �1 to �3. The dependence between these sys-
tems shown in Fig. 3(b) must be due to indirect interaction,
mediated by �2. So there is no edge between the corre-
sponding nodes; i.e., the graph Fig. 4(c) must be wrong as
well.

Summarizing all these results we thus have detected the
right graphical model for coupling: it is Fig. 4(d). We note
that linear correlation analysis does not show any signifi-
cant dependencies between systems �1 and �2 as well as

between �1 and �3, leading to wrong conclusions about
coupling of the underlying systems. To overcome this
problem, specific higher moment correlations could be
considered. However, MI analysis performs this at once,
without any model assumptions.

V. Final remarks.—We have introduced partial mutual
information (4) and an efficient estimator (6) for the analy-
sis of couplings between systems. Thus we applied the
concept of partialization to mutual information analysis
of multivariate time series. Next steps would be applica-
tions to real data.

The transfer entropy introduced in [3] can be considered
as a PMI for detecting couplings between two time series:
It measures the MI of the present of a process and the past
of another one, which is not contained in the past of the first
one. Also in this case of bivariate time series the analysis
would profit (i) from a nontrivial choice of time combs,
especially if the systems operate on different time scales,
and (ii) from the usage of the estimator (6).
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