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Few-Optical-Cycle Solitons and Pulse Self-Compression in a Kerr Medium
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In a transparent medium with instantaneous Kerr nonlinearity we find a new class of few-optical-cycle
solitons and prove them to be the fundamental structures in pulse propagation dynamics. We demonstrate
numerically that in the asymptotic stage of pulse propagation the input pulse splits into isolated few-cycle
solitons where the quantity and their parameters are determined by the initial pulse. We generalize the
concept of the high-order Schrodinger solitons to the few-cycle regime and show how it can be used for
efficient pulse compression down to the single cycle duration.
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Introduction.—The concept of optical solitons is widely
and successfully used in modern optics due to both the
fascinating physics involved and the potential applications
ranging from nonlinear spatial confinement of light in the
form of spatial solitons to ultrashort-pulse duration solitons
in optical fibers (see, e.g., [1-3]). The greatest achieve-
ments this concept has attained is when the slow envelop
approximation for the laser field is applicable [1]. There
are only a few examples in optical physics where the wave
equation for the real laser field is treated in the context of
solitons, but most of them deal with the light propagation
in resonant media [4]. However, laser science has recently
progressed up to the realization of laser systems that gen-
erate pulses with a duration of their envelope comparable
to the period of the electromagnetic field and with a
spectrum spanning over one optical octave as well, wherein
nonlinear effects, mainly due to the Kerr nonlinearity, lead
to spectral broadening [2,3]. To study the nonlinear few-
optical-cycle pulse propagation, two approaches have been
considered recently. The first one is based on the nonlinear
envelope equation extended to the few-cycle regime; it
uses the Taylor expansion of the propagation constant
around the central frequency [2]. Another approach devel-
oped in [5] assumes making calculations in Fourier space
but using one way propagation constant k(w). Both meth-
ods are essentially based on numerical calculations by
using the split-step technique; they are very important for
practical applications but cannot help to understand the key
questions related to fundamental features. The purpose of
the present work is to introduce (i) an exact solvable model
of few-optical-cycle solitons and (ii) extend the concept of
solitons to nonlinear pulse dynamics in the few-cycle
regime. Furthermore, (iii) of particular interest is the in-
vestigation of the pulse self-compression down to single
cycle duration.

Basic wave equation.—Let us start our consideration
with the wave equation for isotropic media which generally
in one dimensional case can be written as [1]
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where 9;—_, stands for the respective derivatives, € is the
linear permittivity whose Fourier representation satisfies
the fundamental Kramers-Kronig relation [6]
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where ¢, and g; are the real and imaginary parts, respec-
tively. It is interesting to note that for medium with ultrab-
road spectral region of transparency (0| K 0 <K w,, e.g.,
in fused silica corresponding wavelengths of the nearest
absorption lines are A; = 9.896 um > 27c¢/w; and A, =
0.116 um < 27rc/w, [1]) the frequency dependence of &,
and g; can be explicitly derived from Eq. (2). As noted in
Ref. [6], if the frequency-dependent term of &, is compa-
rable to g, then it reads £,(w) = &, — a/w?, where g, =
1+ @Q/m) [ Z)"z(si /x)dx is the static permittivity, a =
(2/m) [¢" xe;dx. Thus, in the case of broad range of low
absorption the dielectric permittivity can pass through
zero. In fact, it comes from the anomalous character of
group-velocity dispersion taken place for this case.
However, typical situations in optics occur when the con-
tributions of anomalous and normal character are equally
important, which means that the higher term of the Taylor
expansion in Eq. (2) (on small parameter w?/x> < 1 at
X > w,) has to be taken into account. Then, ¢, reads
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where b = (2/m) [7 (&:i/ x%)dx. A practically useful point
is that in the spectral region where the frequency-
dependent terms are equally important they are both very
small compared to the first term, i.e., a/w?, bw?> < g,.In
this case, the group-velocity dispersion (GVD) is charac-
terized by the function k'(w)= d*(wel?/c)/dw? =
Bbw — a/w?)/ (cs,l,/ %), in which the zero-dispersion fre-
quency is ., = (a/3b)"/* (in fused silica the correspond-
ing wavelength is A, = 1.27 um). Thus, we find that
anomalous dispersion occurs for frequencies below this
critical one, w < w., whereas the normal dispersion re-
gion is at w > w. The nonlinear polarization for a Kerr
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medium is characterized by the constitutive law given by
P, = x*|E|?E (where ' is the cubic nonlinear suscep-
tibility) that assumes the instantaneous character of non-
linear atomic response (see, e.g., [1,2]).

With the use of dispersion Eq. (3), a nonlinear wave
equation for the real electric field can be obtained by using
the so-called slowly-evolving-wave approximation which
neglects back reflection [2,5]. In dimensionless variables
this equation reads (see also [7,8]).

92:u +u — uotu + oZf|ulfu] = 0. 4)

Here, u = E(4my¥/a)'/?, 7 — az/2cel?, and 7=t —
z;;é/ 2 /c is the retarded time. In fact, only one parameter
uw=b/a= (Bwl)™ ! accounts for the type of dispersion
that actually (anomalous or normal) prevails for the main
pulse spectrum. Thus, we emphasize that for few-cycle
pulse propagation in transparent Kerr media Eq. (4) can
play a fundamental role like the nonlinear Schrodinger
equation for long pulses [1]. Equation (4) has the
Hamiltonian H= [*_[lul*/2+ plu, > = [7  ud7|*]d7,
whose value is calculated to control the precision of our
simulations.

Few-optical-cycle solitons.—We restrict our considera-
tion for circularly polarized pulses for which an exact
analysis can be provided. We start with the case of u =
0 where solutions describe the most important case of
stable propagation of the solitonlike field structures com-
prising a few optical cycles [9,10]. In fact, this describes
the situation where the whole pulse spectrum lies in the
anomalous dispersion region, as w. = 0. Assuming a
solution of Eq. (4) of the form: u = a(z, 7) cose(z, T)ey +
a(z, ) sing(z, 7)ey, we can obtain a set of equations for the
amplitude a(z, 7) and carrying phase ¢(z, 7). For the sta-
tionary envelope propagation a(z, 7) = y'/2w(£), one so-
lution of the phase is of the following form
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where £ = w,(7 — vyz) is the dimensionless retarded time
in the soliton reference, w, is the soliton carrying fre-
quency, v~ ! is the soliton group velocity. It should be
noted that the carrying phase ¢(z, 7) does not only contain
the linear term with the carrying frequency but also the
nonlinear term describing the spectral broadening in the
few-cycle soliton. In fact, this term may also be responsible
for the supercontinuum generation in photonic crystal
fibers, as discussed in Ref. [5]. The equation for the am-
plitude a(¢&) can be reduced to the following

dw _ w 2 30 , (4 =5wHw?
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where 62 = 1/yw?2 — 1 > 0. The solitonlike solutions of
Eq. (6) exist at 6> = 62 = 1/8. This can be seen from

analysis of Eq. (6) at a point where w'(£€) = 0. The upper
limit of &, defines the maximum value of the soliton

amplitude wg . = \/m and its minimum duration
Eomin = 2.31 (FWHM). This limitation can be seen by
taking into account that Eq. (4) contains the integral
[*, udt = 0, which gives the constraint that the average
of each field components must equal to zero. It is obvious
that this constraint is not fulfilled for video pulses. The
time profile of this limiting soliton and the dependence of
the few-cycle soliton energy, calculated as W, =
(y/w,) [P w?dé, on the soliton duration are presented
in Fig. 1. As is distinctly seen, a frequency in the central
part of the pulse is essentially larger than that in the
vicinity; i.e., the pulse spectrum is strongly broadened
but all frequency components are locked. An attractive
peculiarity of these solutions from the point of view of
general nonlinear wave theory is that they can be consid-
ered as a continuation of the fundamental Schrodinger
solitons for the envelope of quasimonochromatic wave
(6 < 1) to the few-optical-cycle regime (as 6 approaches
to 0.). A significant difference between the few-cycle
solitons and the Schrodinger ones, as seen in Fig. 1(b),
takes place for the pulse durations less than 2—2.5 cycles.

The influence of the high-frequency dispersion, i.e.,
m # 0 is expressed by the ratio of the carrier frequency
to the zero-dispersion frequency, @,/ w,. It is obvious that
for very small w, corresponding to a case when the main
part of pulse spectrum lies in the anomalous region, sol-
itonlike structures given by Egs. (5) and (6) will not be
significantly changed; i.e., they will exist for a compara-
tively long time. Therefore the question is now what will
happen if a perceptible part of pulse spectrum lies in the
region of normal dispersion. To solve Eq. (4) we use the
split-step Fourier method which provides conservation of
the Hamiltonian with very good accuracy. In Fig. 2 the
evolution of a soliton with the parameters § = 0.32 and
w,/w, = 0.667 (u = 0.0658) taken as an initial field
distribution (a) and the field spectrum (b) with the propa-
gation distance is shown. As can be seen in Fig. 2(b), some
part of the soliton spectrum (about 16% of energy) is
initially located in the normal GVD region. As expected,
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FIG. 1 (color online). (a) Temporal profile of the limiting
soliton (6 = &.). The dashed line shows the envelope distribu-
tion. (b) Few-cycle soliton energy as a function of the pulse
duration. The dashed line refers to the Schrodinger solitons.
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FIG. 2. Snapshots of field distribution (a) and spectrum (b)
along the propagation distance. Input pulse is a few-cycle soliton
with w, = @ = 1 and § = §;, = 0.32; w., = 1.5. For output
few-cycle soliton: 0 =092 and 8™ =0.17. Dispersion
length for these parameters is L, = 15.

this leads to a splitting of the initial spectrum into two
parts: the right part of the spectrum at w > w. forms a
spreading pulse, while the left part transforms into a new
few-cycle solitonlike structure but with redshifted carrying
frequency, which propagates further without changes as
soon as it separates from the spreading background. It
should be noted that the spectrum of this structure is
entirely localized in the anomalous GVD region. To prove
that this is actually a few-cycle soliton and to identify its
physical parameters, w, and &, we will use the approxi-

mate analytic solution of Eq. (6): 9/28/8% — w?/2 —
Arch(v/28/w) = 8¢ [10]. Now using this solution, we
find the soliton amplitude a,, and its energy W,

[ 2 s _ 48(1 —382)
VST 1w, Ws_w3(62+1)‘ @

To select a soliton in the simulations, we use a filter
window in 7 space and then define its energy and its
amplitude. Finally, solving Egs. (7) for given a,, and W,
we obtain the specific soliton carrier frequency w, = a)(U")
and 8 = 8™ [or group velocity y~' = (62 + 1)w?] that
fully characterize a few-cycle soliton. Applying this pro-
cedure to the case of Fig. 2, we obtain the following

parameters of a newly born soliton: a)S,") = 0.92 and 8 =
0.17, with energy of about 70% of the initial pulse energy.

If the energy of the spectrum located in the normal GVD
region is sufficiently large (which is the case of w,/wy =
1) then it provides an effective generation of a spectral

supercontinuum with a temporal spreading in the time
domain (see [5,8]). However, a long duration soliton could
also be created in this case as soon as a part of the initial
spectrum is localized below the critical frequency that is
consistent with the recent experiment [11]. Figure 3(b)
summarizes the simulation results and shows the efficiency
of soliton generation depending on w./®,. We would like
to emphasize that this picture reflects both the stable single
few-cycle soliton generation and the energetic efficiency of
such process. Thus, few-cycle solitons could easily be
excited in a broad range of conditions and therefore should
be considered as basic structures which play a fundamental
role in the dynamics of extremely short pulses.

Pulse self-compression and soliton formation.—Another
point that is of interest for applications is pulse self-
compression in the subcarrier frequency regime. As was
shown numerically in Ref. [9], a combined medium with
instantaneous nonlinear response and plasma dispersion
can provide compression of an initially quasimonochro-
matic pulse below its carrier period. Based on few-cycle
solitons as the fundamental structures, we propose a strat-
egy for pulse self-compression of any short pulse down to
the single cycle duration. Taking into account that the few-
cycle solitons given by Egs. (5) and (6) are a continuation
of the Schrodinger solitons, for the compression strategy
we will follow a way which is known within the frame of
the nonlinear Schrodinger equation or its modifications [1].
The basis of this idea is not only the existence of few-cycle
solitons, but rather their stability against collisions [10].
In that way the compression is determined by a soliton
number N contained in a high-order Schrodinger-like soli-
ton which was taken as an initial distribution [1,12].
Analogously, we introduce this number by taking an input
pulse in the form of a high-order few-cycle soliton, i.e.,
u(é) = Ny'2w(é)ley cosp(é) + ey sing(é)], where ¢(£)
and w(¢) obey Egs. (5) and (6). Then this pulse splits into
few-cycle solitons with the parameters 6" =~ (2n — 1)8,,,
where n = 1, ..., [N]is the sequence of integers, as for the
Schrodinger solitons since for the most few-cycle solitons
8% <« 1 is satisfied. The number of solitons that actually
interact with each other during the pulse propagation is an
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FIG. 3 (color online). (a) The input (solid line) and output
(dashed line) soliton spectra corresponding to Fig. 2.
(b) Dependence of the ratio of the energy of generated soliton
to the input pulse energy as a function of w.,. Input pulse as in
Fig. 2.
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FIG. 4 (color online). Snapshots of field distribution along the
propagation distance for the case of N = 2.04 and N = 4.02.
Intensity shape of the compressed pulse at z = 60 for the case
N = 2.04 is shown in the inset.

integer of [N]; however, it is valid when the inequality
6N < 8. is fulfilled, i.e.,

2[N]— 1)8;, < 1/+/8. (8)

In all other cases, pulse dynamics is more complex, but
eventually a number of solitons with 6" < §. will be
produced.

Figure 4 shows the results of a simulation of pulse
propagation for the case of N = 2.05 and N = 4.02 but
for 6 = 0.08 and 6 = 0.02 soliton shapes, respectively. As
can be seen, the intensity dynamics demonstrates clearly
the compression effect at distances z ~ 60 and z ~ 300 in
Figs. 4(a) and 4(b) [the corresponding linear dispersion
lengths are L; = 60 (a) and L; = 1000 (b)], where very
short spikes are formed with durations 2.88 (a) and 5.86 (b)
at FWHM. The energy within the spikes is about 49% and
40% of the total pulse energy, respectively. The established
parameters of the well-isolated solitons, which are formed
in the asymptotic stage, are: ¥ =0.92 and 50 = 0.24,
® =0.97 and 82 = 0.08 in Fig. 4(a); ®}) = 0.97 and
81 =014, P = 0.98 and 6@ = 0.1, w5 = 0.99 and
83 =0.06, 0 =1 and 6% = 0.02 in Fig. 4(b). Note
that the parameters 8" of the newly born solitons are in
good agreement with Eq. (8). In the few-optical-cycle
regime, the compression factor does not only depend on
N but on the initial pulse duration, 7,, as well. It is well
fitted by the power law 7,/7.;,, * N* where a actually

depends on the initial pulse duration and increases with
decreasing 7,: a = 1.54; 1.6; 1.85; 2.1 for 7, = 607r;
457; 307r; 207 (the carrier period is 27r), respectively.

After self-compression the pulse starts to broaden, then
it splits into several subpulses depending on the parameter
N, and subsequently few-cycle solitons, which are well
separated in space, are formed. In Figs. 4(a) and 4(b), as an
outcome, two and four solitons are observed in agreement
with the soliton number in initial pulse. To identify each
soliton, we used the procedure described above. A remark-
able feature of Fig. 4(b) is that, starting with a longer pulse
but higher N, we can generate more short few-cycle sol-
itons, for example, as short as one cycle duration for the
shortest one.

In conclusion, we have found analytically a new class of
wave soliton structures which describe a few-cycle optical
solitons in transparent media with instantaneous Kerr non-
linearity and have shown that these structures play a key
role in the evolution of laser pulses. In the asymptotic
stage, the input pulse splits into spatially isolated few-cycle
solitons with quantity and parameters determined by the
initial pulse. We have generalized a concept of the high-
order Schrodinger solitons to few-cycle regime and dem-
onstrated how it can be used for efficient pulse compres-
sion down to single cycle duration.
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