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We present a precise theoretical prediction for the decay width of the bound state of two electrons and a
positron (a negative positronium ion), ��Ps�� � 2:087 963�12�=ns. We include O��2� effects of hard
virtual photons as well as soft corrections to the wave function and the decay amplitude. An outcome of a
large-scale variational calculation, this is the first result for second-order corrections to a decay of a three-
particle bound state. It will be tested experimentally in the new positronium-ion facility in Garching in
Germany.
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The positronium ion (Ps�), consisting of two electrons
and a positron, is the only known three-body bound state
free from nucleons. Its existence was predicted by Wheeler
in 1946 [1] and confirmed experimentally by Mills in 1981
[2]. Only the ground state is stable against a dissociation
into positronium and an electron (see Ref. [3] for an
extensive review of its properties and references).
Electron-positron annihilation limits the Ps� lifetime to
about half a nanosecond, as first reported in Ref. [4]. Here
we determine relativistic and radiative corrections to the
annihilation in a three-body bound state and predict the
Ps� decay rate with a 6 ppm precision,

 ��Ps�� � 2:087 963�12� ns�1: (1)

What makes the Ps� ion particularly interesting is that
its theory is very clean, albeit somewhat technically chal-
lenging. With a very good accuracy all but electromagnetic
interactions in Ps� can be neglected. Also the charge
distribution of constituents is well known (pointlike), un-
like in atoms and ions containing nuclei. Quantum electro-
dynamics (QED) suffices to describe all properties of Ps�.

On the other hand, Ps� is a three-body system and thus
its wave function is not known analytically even in the
nonrelativistic approximation. This complicates theoretical
investigations but also provides an opportunity to develop
and test advanced computational techniques. Those new
methods are important for other systems such as the hydro-
gen ion, the molecule H�2 , and the helium atom.

The e�e� annihilation proceeds fastest when the pair is
in a spin-singlet state, like para-positronium (pPs), in
which case two photons can be produced [see Fig. 1(a)].
If the pair is a spin triplet, like ortho-positronium (oPs), the
decay results in an odd number of photons, Fig. 1(b).
Interestingly, unlike ortho-positronium, Ps� can also decay
into a single photon. However, this channel is very rare
[5,6]: all three constituents have to overlap to transfer
momentum to the nonannihilating electron. The three-

photon decay is much more likely, but still much slower
than the spin-singlet two-photon process.

The spatial wave function of Ps� is symmetric with
respect to the two electrons. For the total wave function
to be antisymmetric, the two electrons must be in the spin-
singlet state. It is convenient to think of Ps� as consisting
of a positronium core and a loosely bound electron [7].
This picture reveals the main features of the Ps� lifetime.
When e� meets one of the e�, the odds are about one in
four that their spins form a singlet. Thus Ps� lives about 4
times longer than pPs.

A variational determination of the Ps� wave function [7]
confirms this elegant argument. Furthermore, if this decay
is so similar to that of pPs, the same O��� corrections apply
[8]. In the same order, also the three-photon annihilation
must be accounted for [9]. Together, this led to the theo-
retical prediction for the Ps� decay width [7],

 �1983
th � 2:086�6� ns�1; (2)

where the size of the O��� corrections was used to estimate
the uncertainty [10] (see also Refs. [11–13]).

Recent measurement [10] agrees with this prediction
and approaches its precision, �exp � 2:089�15� ns�1. It is
anticipated that the new intense source of positrons at the
Garching reactor FRM-II will be used to decrease the
experimental error by a factor of 4 or 5, below the uncer-
tainty in Eq. (2).
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FIG. 1. The main decay channel of Ps� (a), and an example of
a corrections to it, the three-photon annihilation (b).

PRL 99, 203401 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
16 NOVEMBER 2007

0031-9007=07=99(20)=203401(4) 203401-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.99.203401


Motivated by this effort, we undertook to improve the
theoretical precision by determining all O��2� effects. Ps�,
a nonrelativistic bound state, is well described by the
Schrödinger equation. Its leading-order decay rate is

 �0 � 2�me�5h�3�r12�i; (3)

where me is the electron mass, r12 is the distance between
the positron and the electron which annihilates, and the
mean value refers to the ground state Ps� wave function

 �� �r12; r13; r23���1;2;3�; ��"1
#2"3� "2#3���

2
p : (4)

Throughout this Letter we use 1=�me, �me, and �2me as
units of length, momentum, and energy [we also set c �
@ � 1, except in the final result (20)]. Thus, h�3�r12�i in
Eq. (3), as well as all mean values to follow, are
dimensionless.

Relativistic effects, spin of the electron, and short-
distance exchanges of photons with a virtuality O�me�
are not accounted for by the Schrödinger equation, which
includes only Coulomb potentials among the three constit-
uents. Like in other nonrelativistic systems [14], these
additional effects can be treated as perturbations and or-
ganized in a series in �,
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The first-order correction A, already discussed, includes
corrections to the two- and three-photon rate,
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Some authors (e.g., Ref. [7]) hint at additional O��� effects
but in our opinion no others exist at this order.

In the next order, four photons contribute [15], correc-
tions O��� must be included in the three-photon decay
[16,17], and O��2� in the two-photon decay [18–20],

 B � B4� � B3� � B2�: (7)

The last term is the focus of this Letter. It is a sum of
several effects: square Bsquared of the O��� correction A2�;
hard-photon corrections Bhard to the e�e� ! �� process;
and soft corrections to the annihilation amplitude Baa and
the wave function Bwf:

 B2��Bsquared�Bhard�Baa�Bwf ; Bsquared�

�
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�
�
8
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2
;

(8)

 Bhard � Bfin
hard �

1

2�
; Bfin

hard � �
40:46�30�

�2 ; (9)

 Baa �
1
3: (10)

All corrections which affect only the annihilation ampli-
tude have already been computed in the context of the pPs
decay. Since they do not depend on the particular bound
state, they apply to the present analysis without changes.

The correction to the wave function Bwf , sensitive to the
three-body dynamics, is the most challenging. As we will
see below, it is divergent and cancels the divergence in
Bhard. The term �2�2 ln� in Eq. (5) is a remnant of those
divergences. In order to regularize divergences, we work in
d � 3� 2� spatial dimensions. Thus, the nonrelativistic
Coulomb Hamiltonian becomes

 H0 �
X
a

~p2
a

2
� V; (11)
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where ~pa, ~rab � ~ra � ~rb are momenta and relative dis-
tances of the positron 1 and electrons 2, 3.

The wave function correction arises due to relativistic
effects, which are treated as a perturbation and described
by the Breit Hamiltonian,

 H�4� � �2
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(14)

where the Pauli matrices are labeled with the number of the
fermion they are acting on. It is convenient to evaluate
separately the spin-independent partH�4�1 , and the spin-spin
and annihilation parts H�4�2 , Bwf � BH1 � BH2 �

1
2� .

The effect of this perturbation is the following replace-
ment in the formula for the decay rate, Eq. (3),

 h�3�r12�i ! 2
�
�d�r12�

1

�E�H0�
0
H�4�

	

� �2

�
BH1 � BH2 �

1

2�

�
h�3�r12�i: (15)

Here 1
�E�H�0 is the Green’s function of the lowest-order

Schrödinger equation and the prime indicates the exclusion
of the ground state. The appearance of divergences is the
main obstacle in the evaluation of this correction. They
originate from r12 ! 0 (ultraviolet limit), where the Breit
Hamiltonian is not a valid description of the dynamics.
Indeed, when one accounts for the hard photons, Eq. (9),
divergences cancel.

In analogy with the earlier work on positronium and
helium [21–24], we rewrite the matrix element in Eq. (15)
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such that the divergences appear only in the coefficient of
one operator, namely �3�r12�. To this end, we rewrite [24]
the delta-function as

 4��d�r12� � 4�~�d�r12� �

�
H0 � E;

�
1

r12

�
�

�
: (16)

This equation implicitly defines ~�d, less singular than �d.
The most singular part is in the anticommutator in the
second term. This term cancels the Green’s function, �E�
H0�

1
�E�H0�

0 � I � j�ih�j, where I is the identity operator.
Hence, divergences appear only in first-order elements.

In the spin-independent part we find
 

2�h�3�r12�i

�
BH1 �

1

4�

�
�

1

4

X21

i�1

vi �
1

E2 v1v22 � v23

�
�
2�
h�3�r12�i; (17)

from which we can determine the value of BH1 in terms of
the ground-state mean values listed in Table I. Among

them, the regularized cubic operator is defined by
Eq. (1.5) in Ref. [24].

In the spin-dependent part, the effect of Pauli matrices in
H�4�2ab, Eq. (14), is evaluated with the spin wave function in
Eq. (4) and represented by constants Aab for each pair of
fermion lines: A12 � �2� 6�, A13 � �A23 � �2. We
keep � only in the coefficient of the divergent part. In
terms of the operators in Table I, using the symmetry ~r2 $
~r3 and the virial identity 2E � hVi, we get

 

2�h�3�r12�iBH2 �
1

2
��v7 � v8 � v14 � v15 � v18�

�
1

6
�v9 � v10� �

8E� 5

4
v20 �

1

4
v21

� v24 �
v1

E2 �v25 � 2v20� � v26: (18)

The numerical values in Table I are obtained with a
variational method [25].

We found the nonrelativistic energy value, E �
�0:262 005 070 232 980�1�, that agrees with an even
more accurate earlier result [26]. Previously obtained
mean values of �3�rab� [13,27], and nonsingular products
of 1=rab [13] are also confirmed. Finally, the mean value of
the spin-independent part of the Breit Hamiltonian H�4�1
agrees with Ref. [27]. Crucial for the decay is the mean
value of the delta-function, obtained using the representa-
tion of Ref. [28],

 h�3�r12�i � 0:020 733 198 005 1�2�: (19)

This value agrees with the one found in Ref. [27] and
somewhat improves its accuracy.

For the new evaluation of the Ps� decay rate we use � �
1=137:035 999 11�46� and the atomic unit of time
�2mec2=@ � 1017 s�1=2:418 884 326 505�16� [29]. Our fi-
nal result in Eq. (1) is obtained using

 ��Ps�� � 2�
�5mec

2

@
�1� C�h�3�r12�i; (20)

where C is given in Table II, and we use Eq. (19). The last

TABLE I. Operators affecting the Ps� wave function and their
ground-state mean values. We denote V12 � V � 1=r12.

i Operator Oi vi � hOii

1 E2=r12 0.023 327 6
2 V2

12=r12 0.033 945 0

3 2Ep2
3=r12 �0:014 986 7

4 �2EV12=r12 �0:015 844 8

5 �2p2
3V=r12 0.090 907 3

6 �p4
3=r12 �0:029 850 5

7 �4��3�r13�=r12 �0:051 014 0

8 4��3�r23�=r12 0.001 794 7

9 3E=r2
12 �0:219 554 9

10 �3V12=r
2
12 0.022 092 3

11 �� ~p1 � ~p2�
i�1=r12�� ~p1 � ~p2�

i �0:001 809 5

12 ��4�=3��3�r12�p
2
3 �0:003 350 2

13 �pi3�3r
i
12r

j
12=r

5
12 � �

ij=r3
12�p

j
3=2 �0:000 275 1

14 r12 
 r13=�2r
3
12r

3
13� �0:000 562 9

15 r12 
 r23=�2r
3
12r

3
23� �0:001 413 3

16 �p2
1�1=r12�p

2
3 �0:037 118 4

17 �p2
2�1=r12�p

2
3 �0:008 951 8

18 �
P
ap

i
a�1=r

2
12�p

i
a=2 �0:077 005 7

19 2
P
a<bzabp

i
a

��ij=rab � r
i
abr

j
ab=r

3
ab�=r12p

j
b 0.296 062 9

20 2��3�r12� 0.130 270 5

21 2P�1=r3� 0.014 113 8

22 H�4�1 �0:072 738 1

23 4� ~�3�r12�
1

�E�H0�
0H
�4�
1 0.178 732 5

24
P
a<b4�Aab ~�3�r12�

1
�E�H0�

0 �~�3�rab� 0.334 788 9

25 2��3�r23� 0.001 074 4
26 12��3�r12�

1
�E�H0�

0 ��3�r13� 1.025 744 7

TABLE II. Corrections to the width of Ps�.

Correction Value

�A3� 0.002 693 245
�A2� �0:005 882 770
�2�2 ln� 0.000 524 019
�2B4� 0.000 001 480
�2B3� �0:000 064 352
�2Bsquared 0.000 008 652

�2Bfin
hard �0:000 218 3�34�

�2Baa 0.000 017 750
�2BH1 0.000 078 366
�2BH2 0.000 541 484
3�3ln2�=�2�� �0:000 004 491
2:5�2:5��3 ln� �0:000 004 8�48�
Total C �0:002 309 7�59�
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two corrections listed in Table II refer to the third order in
�. The leading quadratic logarithm was found in Ref. [30]
and is valid for positronium atoms as well as for the ion.
The linear log (the last correction) has not yet been calcu-
lated for Ps�. However, it is known for pPs and oPs [31–
33]. We expect its value for Ps� to be close to that for pPs
and use the latter as an estimate. We assign this correction a
100% uncertainty, which also conservatively estimates
nonlogarithmic higher-order effects [34].

Note that Ref. [27] includes a prediction of ��Ps� !
��� with a seemingly higher precision than ours. That
result, however, does not include any corrections be-
yond the tree level [this corresponds to setting C � 0 in
our Eq. (20)] and its error estimate includes only the
numerical uncertainty of the variational calculation in
Ref. [27].

Another experimentally interesting quantity is the
branching ratio of the three-photon decay. We find

 BR �Ps� ! ���� �
��Ps� ! ����

��Ps��
� �

�
A3� � ��B3� � AA3�� �

7

3
A3��2 ln

1

�
� . . .

�
� 0:002 635 8�8�: (21)

The uncertainty is due to the unknown O��2� corrections
to the decay Ps� ! ���. Only the logarithmic term is
known in this order [35], and we take half of its value to
estimate the uncertainty.

The structure of corrections found in this study confirms
the picture of Ps� as an electron loosely interacting with a
positronium core [7]. The mean value in Eq. (19) is very
close to that obtained with a neutral positronium, neglect-
ing the second electron, 1=�16�� � 0:019 89. Also, in the
sum of all effects in Table II, there is a significant cancel-
lation between the hard effects Bhard and the soft ones
BH1 � BH2 � Baa, also observed in positronium [19]. It
would be interesting to understand the origin of this can-
cellation, which for now remains an open question.

The accuracy we have obtained for the decay rate is
6 ppm, about 500 times better than the previous best
prediction, Eq. (2). Further progress in the theory of the
Ps� decay requires the logarithmic term O��8 ln�� and
improved hard corrections O��7�. However, the accuracy
obtained in this Letter is sufficient for the foreseeable
future. It exceeds the anticipated accuracy of Garching
measurements by about a factor of 200. We are thus
prepared for the new data and are looking forward to this
intriguing test of three-body bound-state QED.
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