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We extend all known black-hole no-hair theorems to space-times endowed with a positive cosmological
constant �. Specifically, we prove that static spherical black holes with �> 0 cannot support scalar fields
in convex potentials and Proca-massive vector fields in the region between the black hole and the cosmic
horizon. We also demonstrate the existence of at least one type of quantum hair, and of exactly one
charged solution for the Abelian Higgs model. Our method of proof can be applied to investigate other
types of quantum or topological hair on black holes in the presence of a positive �.
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The no-hair conjecture states that gravitational collapse
reaches a stationary final state, characterized by a small
number of parameters. The part of this that has been
rigorously proved, called the no-hair theorem [1–3], deals
with the uniqueness of stationary black-holes, which are
characterized by mass, angular momentum, and charges
corresponding to long-range gauge fields. In particular,
static black-holes do not support external fields corre-
sponding to scalars in convex potentials, Proca-massive
gauge fields [4], or even gauge fields which have become
massive via the Abelian Higgs mechanism [5,6].

All these theorems assume, in addition to stationarity,
asymptotic flatness, which requires a vanishing cosmologi-
cal constant. The stress-energy tensor then must vanish at
infinity, which means that all matter fields must approach
their vacuum values. However, recent observations suggest
a strong possibility that the Universe is equipped with a
positive cosmological constant, �> 0 [7,8]. If this is so,
there should be a cosmic horizon of size �1=

����
�
p

, and
proofs of uniqueness of black-holes become suspect.
Even if a black-hole forms as the final state of gravitational
collapse, its horizon will be inside the cosmic horizon.
There is no global timelike Killing vector outside the
black-hole horizon. Further, the stress-energy tensor need
not vanish at infinity, nor even at the cosmic horizon, so
boundary conditions for the fields are not obvious.

Price’s theorem [9], which may be thought of as a
perturbative no-hair theorem, was proved for �> 0 some
years ago [10] for massless small fluctuations. But no
version of a theorem about the existence of static matter
fields has been established for �> 0. Here we establish
classical no-hair theorems for various different fields, and
also extend one known case of quantum hair, on static
black-hole space-times with �> 0. Our method involves
a paradigm shift—we consider only the region between
the black-hole horizon and the cosmic horizon, and ignore
the asymptotic behavior of both the metric and the matter
fields. In fact, we do not use the equations for the metric at
all, beyond assuming the existence of a cosmic horizon.
We find that it is possible to extend most of the known no-

hair theorems to black holes in a Universe with �> 0. We
also find one clear exception, that of the Abelian Higgs
model.

We will consider the various no-hair conjectures in a
black-hole space-time endowed with a positive cosmologi-
cal constant, which leads to the existence of a cosmic
horizon. By a static black hole with �> 0 we will mean
a space-time with at least two horizons, between which
there is a timelike Killing vector �� satisfying ���r���� �
0. Then �� is orthogonal to a spacelike hypersurface �,
which is assumed to be spherically symmetric. The norm
��r� �

����������������
�����

p
vanishes at two values rH < rC of the

radial coordinate r, thus dividing the manifold into three
regions. The region r < rH contains a space-time singu-
larity. The points of this region do not lie to the past of �
(for which rH < r < rC), while the points of � do not lie to
the past of the region r > rC. We are not concerned with
the world outside the cosmic horizon; so the asymptotic
behavior of the metric will not be relevant to our calcu-
lations. In particular we do not assume the metric to be
asymptotically de Sitter.

The various no-hair theorems will be taken to be state-
ments about the corresponding classical fields on the
spacelike hypersurface � between the two horizons. We
will not look for solutions, only prove general statements
about their existence. The crucial ingredient for these
proofs is that the squared norm of the stress-energy tensor
is bounded at each horizon. This is dictated by Einstein’s
equation, G�� � 8�T�� ��g��; if the stress-energy ten-
sor T�� has unbounded norm at any point, the norm of the
Einstein tensor G�� must also become unbounded there,
giving rise to a curvature singularity at that point. Since the
horizons are assumed to be regular, i.e., only coordinate
singularities, it follows that the Einstein tensor and hence
the stress-energy tensor must have bounded norm at both
horizons. Similar arguments show that the norm of the
stress-energy tensor must be static; i.e., its Lie derivative
must vanish along the vector field ��. Generally we will
say that the stress-energy tensor is bounded, or static, when
we actually mean its norm has those properties.
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Although the calculations are on a spacelike hypersur-
face � orthogonal everywhere to a timelike Killing vector,
it is convenient to use covariant notation without resorting
to explicit coordinates. Let ��

�0 � ���0 � �
�2����0 denote

the projection tensor which projects vectors to � and let
~r� denote the induced connection on �. Then for a rank p
antisymmetric tensor � whose Lie derivative with respect
to �� vanishes,

 

~r ���!��...�� � ��r����0...�0 ���
�0 . . . ��

�0 ; (1)

where ! is the �-projection of �. This is essentially the
statement that the four divergence of � is the same as its
three divergence when both � and the metric are time
independent. All our proofs will be based on this result.

Let us start with the example of a real scalar field � in a
potential V���. The equation of motion for � is

 r�r
�� �

@V���
@�

� V0���: (2)

A nonvanishing V��� enters the stress-energy tensor, so it
follows that L�� � 0 on �. Then we can project this
equation down to � using Eq. (1) to get

 

~r ���~r��� � �V0���: (3)

For V��� convex [i.e., V 00��� 	 0], we multiply both sides
of this equation by V0��� and integrate over the spacelike
region � between the two horizons to get

 

Z
@�
�V0���n� ~r���

Z
�
��V00���~r��~r���V 02�����0:

(4)

Here @� is composed of the two spheres located at the two
horizons, and n� is the �-ward pointing spacelike unit
normal to these two spheres. Since ~r��~r�� appears in
the stress-energy tensor T��, it must be bounded at the two
horizons. We may then apply Schwarz inequality, which in
this case says that

 jn� ~r��j
2 
 �n�n���~r

��~r��� � �~r
��~r���: (5)

For generic V���, the boundedness of T�� on @� implies
that � must also be bounded there. Since ��r� � 0 on @�,
it follows that the integral on @� vanishes. Since � is
spacelike ~r��~r�� is non-negative, as is V 00��� due to
convexity, so Eq. (4) says that � is a constant at its
minimum everywhere on �, which is the no-hair result.
For a massless �, we can multiply the field equation by �
and insist that � be measurable at the horizons, and the no-
hair result follows. Note that we did not need to use the
gravitational equations of motion.

The proof may not apply for a nonconvex potential
V���. A real scalar field moving in the double-well poten-
tial V��� � �

4 ��
2 � v2�2 can have a nontrivial static so-

lution in � (it may be an unstable solution; see [11]). An

interesting and not so obvious case is that of the conformal
scalar, for which the interaction is V��� � 1

12R�
2. Then

the part of the action containing � is invariant under local
conformal transformations, as are the scalars T�� and
T��T��. Then in principle one can make a transformation
to make � or ~r�� diverge at @� without causing a
curvature singularity. Then the @� integral can be nonzero,
which allows a nontrivial configuration of � on �. Indeed
solutions with conformal scalar hair with �> 0 are known
[12]. The proof also will not apply to scalars with a kinetic
term of the wrong sign, as in phantom models of dark
energy [13]. Of course, in such models a static black-
hole may not form in the first place, and a statement of
no-hair theorems may not be possible.

For the massive vector field, the proof proceeds in a
similar manner. The matter Lagrangian is

 L � �1
4F��F

�� � 1
2m

2A�A�: (6)

Let us define the electric potential � � ��1��A� and
electric field e� � ��1��F

��. A little algebra shows that

 

~r ����� � �e� �L�a�; ~r�e
� � ��1��r�F

��;

(7)

so that the equation of motion for e� is

 

~r �e
� �m2� � 0: (8)

Multiplying both sides by �� and integrating, we find

 

Z
@�
��e�n� �

Z
�
���e�e

� �m2�2� � e�L�A�� � 0;

(9)

where n� is the �-ward unit normal to @�, as before. Since
�2 and e�e� both appear in T��, � must be finite, and by
Schwarz inequality e�n� is finite, so the @� integral
vanishes. The Lie derivative vanishes by staticity, so the
vanishing � integral contains positive definite quantities. It
follows that � � 0 � e� on �.

The equation of motion for the magnetic field is

 

~r ���f��� �m2�a� � 0; (10)

where a� and f�� are the �-projections of A� and F��.
Multiplying both sides by a� and integrating, we find

 

Z
@�
�a�f��n� �

Z
�
�
�
1

2
�f���2 �m2�a��2

�
� 0: (11)

Since a� and f�� appear in T��, these must be regular,
which ensures that the @� integral vanishes. The second
integral is over a sum of squares, so a� � 0 � f�� on �,
which is the desired no-hair result.

For the massless vector field the Lagrangian has a local
gauge symmetry, which nullifies the boundedness argu-
ment. A gauge transformation can always change a
bounded function � to one that becomes unbounded on
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the horizon. Thus we cannot set the @� integration to zero,
so e� need not vanish on � either. In fact Reissner-
Nördstrom solutions with a positive cosmological constant
are known.

There are two gauge-invariant Lagrangians which de-
scribe a massive Abelian gauge field. The no-hair conjec-
ture fails for both of these cases in the presence of a
positive �, as we describe now.

The first mechanism we consider is described by the
Lagrangian

 L � �
1

4
F��F

�� �
1

12
H��	H

��	 �
m
4

��	�B��F	�;

(12)

where B�� is an antisymmetric tensor potential and
H��	 � �r�B�	 � cyclic� is its field strength. This system
describes equally well either a massive vector or a massive
antisymmetric tensor. A static, spherical, asymptotically
flat black hole can carry a charge of the B field, with both
F�� and H��	 vanishing everywhere outside the black-
hole horizon [14]. It is easy to see that a similar solution
exists for �> 0 as well.

Let f�� and h� be the �-projections of F�� and H� �
1
6 


���	H��	, respectively. Then the ‘‘magnetic equations’’
can be written as

 

~r ���f��� � �mh�; ~r��h�� � �mf��: (13)

If we also define e� � ��1��F
�� and  � ��1�	H

	, we
find the ‘‘electric equations’’

 

~r �e� � �m ; ~r��� � � ��me�; (14)

where we have used L�H
� � 0.

Multiplying the first of Eq. (13) by h�, and the first of
Eq. (14) by � , and integrating, we obtain

 

Z
@�
�f��h�n� �

Z
�
m�

�
1

2
f��f�� � h�h�

�
� 0; (15)

 

Z
@�
� e�n� �

Z
�
m��e�e� �  2� � 0: (16)

The surface integrals contribute nothing. It follows that all
components of the field strengths H��� and F�� vanish on
�. The solution is then the de Sitter–Schwarzschild black
hole, with an arbitrary charge q corresponding to the B
field, whose nonvanishing component is

 B� �
q

4�r2 : (17)

This charge should be measurable via a stringy Bohm-
Aharonov effect, just as for asymptotically flat space-times
[15]. We should mention here that the free Abelian two
form will leave the same kind of charge on the black hole,
the proof of H��	 � 0 on � proceeds in a similar fashion
for that theory.

The other case is that of the Abelian Higgs model. In the
absence of cosmological constant, a static spherically sym-
metric black hole does not carry electric (or magnetic)
charge if the gauge field becomes massive via spontaneous
symmetry breaking. However, as we shall see now, the
presence of a positive cosmological constant allows a
charged black hole in the false vacuum. The matter
Lagrangian for the Abelian Higgs model is
 

L��
1

4
F��F���

1

2
q2	2

�
A��

1

qv
r��

��
A��

1

qv
r��

�

�
1

2
r�	r�	�

�
4
�	2�v2�2: (18)

The equations for the magnetic and the electric fields on
� read

 

~r ���f
��� � �q2	2

�
a� �

1

qv
~r��

�
� 0; (19)

 

~r �e
� � q2	2

�
��

1

qv
L��

�
� 0; (20)

where the definitions for e� and f�� are as in Eqs. (7) and
(10). Applying the now familiar techniques to Eq. (19), we
get
 Z
@�
�
�
a� �

1

qv
~r��

�
f��n�

�
Z

�
�
�

1

2
f��f�� � q2	2

�
a� �

1

qv
~r��

�

�

�
a� �

1

qv
~r��

��
� 0: (21)

The � integral can be nonvanishing only if the @� integral
is also nonvanishing, which means that the norm of either
f�� or (a� � ~r��) must diverge at the horizon. However,
since we have assumed spherical symmetry, a nonvanish-
ing f�� is essentially that of the magnetic monopole. But
then (a� � ~r��) cannot be both spherically symmetric
and divergent at the horizon. So f�� � 0 on �.

For the electric field we use Eq. (20) to find
 Z
@�
�
�
��

1

�qv
_�
�
e�n�

�
Z

�

�
�e�e� � �q

2	2

�
��

1

�qv
_�
�

2
�
� 0; (22)

where _� � L��, and we have used L� �a� �
1
qv

~r��� � 0

because of staticity. Since e�e� appears in T��, we can use
Schwarz inequality to say that e�n� is finite on @�. So the
� integral can be nonzero only if (�� 1

qv �
�1 _�) diverges

on at least one horizon. In this case 	 must vanish on that
horizon.

For the asymptotically flat black hole (� � 0), it can be
shown that 	 cannot vanish on the horizon, and so the black
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hole cannot have electric charge [6]. Let us see what
happens for our present choice of � � 0. The equation
of motion for 	 projected down to � reads

 

~r ��~r�	 � ��q2	
�
��

1

qv
��1 _�

�
2
� ��	�	2 � v2�:

(23)

Let us assume for the moment that 	 vanishes on the black-
hole horizon at r � rH, and starts increasing with increas-
ing r. Then 	 must increase monotonically from 	 � 0 at
r � rH to one of: (i) 	 � 	C < v at r � rC; (ii) 	 � v at
r � rv 
 rC; (iii) 	 � 	max < v at the turning point r �
rmax < rC.

In all three cases, we multiply Eq. (23) by (	� v) and
integrate over a region � to get
 Z
@�
��	� v�n� ~r�	

�
Z

�
�
�

~r�	~r�	� 	�	� v�
�
��

1

�qv
_�
�

2

� ��	� v�2	�	� v�
�
� 0: (24)

The region � and its boundary @� for the three cases
are taken, respectively, to be (i) � � �, @� � @�;
(ii) � � �jr<rv , @� � spheres at rH, rv; (iii) � �
�jr<rmax

@� � spheres at rH, rmax.
In all three cases, the integral over @� vanishes, and all

terms in the � integral are non-negative everywhere on �.
So we have a contradiction and 	 cannot increase from
zero as r increases from rH. These arguments can be
trivially modified to show that 	 cannot decrease from
zero as r increases from rH, nor can 	 increase or decrease
from zero as r decreases from rC. So in general, 	 � 0 at
either horizon, so the electric field vanishes on �, and the
black-hole does not carry an electric charge, which is the
no-hair statement. There is however one exception. This is
the solution for which 	 � 0 on all of �. Then Eqs. (20)
and (22) are the same as those for the ordinary Maxwell-
Einstein system. Then the black hole may carry an electric
charge, and the space-time is described by the Reissner-
Nördstrom–de Sitter solution.

We also note here that the assumption of spherical
symmetry is not crucial for the proofs, except for the
Higgs model. So axisymmetric black-holes are hairless
for most field theories, while dipole or other axisymmetric
hair cannot be ruled out for the Higgs model.

We have proved various no-hair theorems by restricting
attention to the region between the two horizons for black-
hole space-times with � � 0. Unlike usual investigations
of black-hole space-times, we have managed to completely
ignore the asymptotic behavior. This is the new paradigm
referred to earlier, which we believe should be useful in

further investigations of �> 0 space-times. Interestingly,
the Abelian Higgs system allows a charged solution which
has no counterpart in the asymptotically flat case. This
suggests the intriguing possibility that, even for the � �
0 black holes with hair, there may be additional classes of
solutions for � � 0, coming from nontrivial boundary
conditions at the two horizons. For example, black holes
pierced by a cosmic string [16], black holes with nontrivial
external Yang-Mills and Higgs fields, or Skyrme black
holes [17,18] may have more varied counterparts for �>
0. Black holes with discrete gauge hair (see [19] for a
review), because of the underlying Higgs model, may be
dressed differently for �> 0. There may also be new
axisymmetric solutions in a Higgs background. Other
kinds of quantum hair such as non-Abelian quantum hair
[19,20] or spin-two hair [21], whose existence are related
to the topology of the space-time, are likely to be present
also for �> 0.
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