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Spontaneous Splitting of a Quadruply Charged Vortex
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We studied the splitting instability of a quadruply charged vortex both experimentally and theoretically.
The density defect, which is a signature of the vortex core, is experimentally observed to deform into a
linear shape. The deformed defect is theoretically confirmed to be an array of four linearly aligned singly
charged vortices. The array of vortices rotates and precesses simultaneously with different angular
velocities. The initial state of the system is not rotationally symmetric, which enables spontaneous

splitting without external perturbations.
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Vortices are often observed in classical gases and fluids
such as air and water, and they are especially important for
understanding the rotational motions of these systems. In
quantum fluids and gases, the circulation associated with
the vortices is quantized [1]. The concept of a quantized
vortex naturally includes both singly and multiply charged
vortices. The phase of the order parameter changes by 2
(multiple of 277) around a singly (multiply) charged vortex
line. Singly charged vortices have been found in, e.g.,
superfluid He [2], superconductors, and condensates of
atomic gases [3,4]. Although multiply charged vortices
were found in systems of superfluid He [5] and super-
conductors [6] and studied theoretically [7], it is difficult
to experimentally observe their dynamics in these systems.
Studies of atomic gases have changed this situation re-
markably. Recently several groups have succeeded in cre-
ating multiply charged vortices in atomic gases by flipping
of a magnetic field [§8—10] and by using a Laguerre-
Gaussian laser beam [11]. Dilute atomic Bose-Einstein
condensates (BECs) are the first systems where we can
directly observe the dynamics of multiply charged vortices,
the details of which still remain unknown.

The energy of one j-charged vortex is roughly propor-
tional to j2, which is larger than that of j singly charged
vortices [12]. Therefore, except for the case of a nonhar-
monic and rotated confinement potential where a giant
vortex state is energetically preferred [13], multiply
charged vortices are energetically unstable and should split
into singly charged vortices. Nevertheless, in the first
experimental observation of doubly charged vortices in
atomic gases where a harmonic and nonrotated trap poten-
tial was used, the vortices did not show any sign of splitting
[8]. Based on a pioneering study [14] on the stability of a
multiply charged vortex, we proposed [15] that the split-
ting starts from several places in an axially elongated
system and the split vortices intertwine. Because of the
intertwining, an individual vortex was not clearly observed
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in the axially integrated image of the atom density. A split
vortex was observed in the later experiment [9] and the
splitting time was measured as a function of the peak linear
density of the condensate. Two independent studies [16,17]
successfully reproduced the measured splitting times. In
both simulations, the local initiation of the splitting and the
intertwining of the split vortices were also observed.
While a doubly charged vortex merely splits into two
vortices, a quadruply charged vortex has various patterns
of splitting. Splitting patterns of two-, three-, and fourfold
rotational symmetries are presented in Ref. [18]. Here we
note the role of conservation of angular momentum in the
instability of a quadruply charged vortex. Let us assume a
radially trapped 2D condensate and its density n(r) is a
function of the radius. This simplified model represents the
slices of a cigar-shaped condensate. When there is a singly
charged vortex at a radius r;, the angular momentum of the
condensate becomes L; = 27 [} rn(r)dr, which is pro-
portional to the number of atoms outside the radius r;.
When a system has four vortices at radii ;,(i = 1,...,4),
the total angular momentum is given by the sum L =
S+, L. If we consider the conservation of angular mo-
mentum only for the sum L, the positions r; of the vortices
are restricted. For example, when the ith vortex goes out-
ward, L; decreases, and to compensate this another (jth)
vortex must go inward and increase L;. Figure 1 explains
this argument schematically. Our initial state is a quadruply
charged vortex at radius 7;,;;, and therefore r; = r;,;; at the
beginning. When ry,;; = 0, the splitting of vortices always
accompanies decrease of the sum L and thus all »; should
remain zero for the sum L to be conserved. Note that we
ignored an additional angular momentum due to surface
oscillation of the condensate in this model. In fact, several
Bogoliubov excitations include a pair of eigenfunctions
that correspond to the vortex splitting and surface excita-
tion, respectively, and small perturbation to the initial state
should be enough to split the vortices even right in the
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FIG. 1. Schematic plot of conservation of angular momentum.
The curve shows the angular momentum L; as a function of the
vortex position r;. Initially a quadruply charged vortex is at
radius ry;. After the splitting, two of the vortices, represented by
open and solid circles, move to rj and r}, for example. In this
process, the total angular momentum L = )" L; must be con-
served. Therefore, if r| < ryy, then rh > riy.

center [14,18] within the conservation of angular momen-
tum. However, the aforementioned simplified model still
leads us to expect that the off-centered initial position
enables a faster and wider splitting as the initial displace-
ment increases without further perturbation.

In this Letter we study the splitting instability of a
quadruply charged vortex both experimentally and theo-
retically. The topologically created quadruply charged
vortex was detected as a density defect which is a region
with lower atom density. We observe the deformation of
the density defect into a linear shape. The linear shape is
numerically reproduced and confirmed to be an array of
linearly aligned four singly charged vortices. The motion
of this density defect is explained as a combined motion of
rotation and precession. Here the rotation means the mo-
tion of the defect around the center of the defect, whereas
the precession means the motion of the defect around the
center of the condensate as shown in the lower panel of
Fig. 2(a) and the gray arrow in Fig. 2(b). Details of the
figures are explained later. We confirm that an initial
displacement of the multiply charged vortex is crucial to
enable spontaneous splitting within an observation time
both in the experiments and simulations. In fact, to repro-
duce the experimental observation, ry; = 0.2Ryg is re-
quired in the simulation, where Ryg is the Thomas-Fermi
radius of the condensate.

A series of experiments was performed in order to study
the vortex splitting [19]. We created a 3’Rb (F = 2, mp =
2) BEC in an loffe-Pritchard magnetic trap. The number of
atoms in the BEC was about 5 X 10° with a minimum
magnetic field of By = 0.4 G. The axial (radial) trapping
frequency was w, =27 X 15 Hz (w, = 27 X 360 Hz)
and the axial (radial) Thomas-Fermi radius of the BEC was
60 pwm (3 pwm), and the chemical potential was 230 nK.

A quadruply charged vortex was topologically created in
the BEC by reversing the axial magnetic field B, from

(a) rotation (b) precession
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FIG. 2. Schematic plots of vortex dynamics after the splitting.
(a) There are four vortices (circles) in the condensate. Sum of the
velocity fields (arrows) of each of the vortices results in rotation
of the array. (b) The gray area is the condensate. For each of the
vortices in the condensate, an antivortex outside the condensate
is considered as an image vortex. The original vortices (image
vortices) are shown with small circles with counterclockwise
(clockwise) arrows. The velocity field of the antivortices makes
the original vortices precess as a whole (gray arrow).

By =0.4to —0.4 G in 3 ms [10]. In order to stabilize the
formation of the vortex, a blue-detuned laser beam at the
wavelength of 532 nm was applied below the BEC to
remove the gravitational sag. To maintain axial confine-
ment of the BEC after reversing the magnetic field, a red-
detuned laser beam at the wavelength of 852 nm was
focused at the condensate, which suppressed the axial
expansion and the axial size of the BEC expanded from
160 to 240 um during the holding time of 10 ms. In
contrast, without the laser beam, the axial size of the
BEC expanded from 170 to 550 um. The time evolution
of the vortex was observed using a tomographic imaging
technique. We probed a 60 pm thick slice of the conden-
sate axially, which was about one-third slice of the BEC for
the time of flight (TOF) of 15 ms.

Images illustrating the time evolution of the density
profile including the vortices are shown in Figs. 3(a)—
3(d). Initially, the off-centered vortex precessed around
the center of the BEC in the counterclockwise direction
(a), which corresponds to the direction of the angular mo-
mentum. Then the deformation of the density defect was
observed for the holding time of about 4.5 ms (b). This
deformation into a linear shape could be held for a few ms
[Figs. 3(c) and 3(d)]. For holding times longer than 7 ms,
no vortices were clearly observed.

What is the cause of this linear deformation? We study
the dynamics of the condensate using the time-dependent

Gross-Pitaevskii (GP) equation ihw = [—% +V(r)+
%Iqb(r, )|*]é(r, 1), where ¢ is the condensate wave
function, V is the harmonic confinement potential, a is
the s-wave scattering length, and m is the mass of a 3’Rb
atom. To study small perturbations from multiply charged
vortex states, we first consider its time-independent form

(B2 — y+V+ %Id)lz)gb = 0. The wave function

2m
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FIG. 3 (color online). (a)—(d) Axial absorption images of the
BEC for the holding time of 4.0, 4.5, 5.5, and 6.5 ms. TOF =
15 ms. (e)—(i) 3D simulation using the time-dependent GP
equation. Unit of length is um. (e)—(h) Density profile, axially
integrated over a central region (from —6.9 to 6.9 wm) at 3.5,
4.5, 5, and 5.5 ms. Dotted lines are operationally defined axes of
the density defects. Crosses are the averages of positions of the
vortices. (i) Density isosurface of the condensate at 3.5 ms for
5% of the maximum density. Contour lines at z = 0, =10 um
are also plotted. Four split vortices are seen in the condensate.

can be written in the form ¢ = /ne’® where ¢ is the
phase. The atom density n is zero along the vortex lines,
and therefore vortices are associated with density defects.
The velocity field %V(p is proportional to the phase gra-
dient. The wave function of a condensate with a quadruply
charged vortex in a 2D rotationally symmetric system is of
the form ¢(r, ) = ¢o(r)e™’. A small perturbation to the
initial condensate wave function is described by the eigen-
modes of the Bogoliubov equations. In this system, the
eigenfunctions for an eigenenergy &; can be written in the
form u,(r)e’*¥? and v,(r)e'"~? where [ is the angular
momentum index. Other indices are omitted.

The existence of complex eigenenergies is crucial for the
splitting of multiply charged vortices through dynamical
instability [14,15,18], because the population of such
modes grows exponentially. They exist with indices [ =
2 to 6 in this model. Figure 4(a) shows the imaginary part
of the eigenenergies for [ = 2, 3, 4 for the range of an,
relevant for the present experimental setup, where n, is a
linear atom density [20], which corresponds to the inter-
action parameter 1 for the 2D system in Ref. [18]. The
arrow A in Fig. 4(a) represents the range of an, for a
condensate with 5 X 10* atoms, which is roughly the
number of atoms in the present experiment. Within this
range, the [ = 2 splitting mode is dominant since it has
the largest imaginary part of the eigenenergy in a wide
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FIG. 4. (a) Quantum numbers [ = 2, 3, and 4 show the exis-

tence of a complex excitation that causes the splitting in a two-,
three-, or fourfold symmetric pattern at the linear density an.,
which is the same as that in Ref. [18]. The arrow A (B) is the
range of an, within a condensate of N =5 X 10* (2 X 10°)
atoms. Splitting with a twofold symmetry is dominant when N =
5 X 10*. (b) Splitting patterns of [-fold rotational symmetry.
Circles represent singly charged vortices. Dotted lines are guides
of symmetries.

range of an,. When only the /th mode is excited, the
perturbed wave function has the form o(r, 0,1) =
ei40{¢0(r) + [ul(r)e”ee*isl’/h + v}k(r)ef"lae"s”/h]}. The
periodicity of the #-dependent factors means that the con-
tribution from an excitation with index / makes the density
of the condensate to be [ fold rotationally symmetric.
Therefore the splitting pattern must have /-fold symmetry.
Figure 4(b) is a sketch of two-, three-, and fourfold rota-
tionally symmetric patterns of singly charged vortices.

A numerical simulation using the 3D time-dependent
GP equation was performed to study the dynamics. In our
simulation, we assume a cigar-shaped condensate of 5 X
10* 8Rb atoms confined in a harmonic trap with radial and
axial trapping frequencies of 360 Hz and 36.6 Hz, respec-
tively, which mimics our experimental setup. Correspond-
ing to the experimental results in Figs. 3(a)—3(d) which are
not rotationally symmetric, we used an asymmetric initial
condition in which the quadruply charged vortex is dis-
placed by ry,;; = 0.2Rtg from the center of the trap. The
classification of splitting patterns using the rotational sym-
metry remains valid even in this asymmetric system, be-
cause the patterns come from quantized phase changes of
wave functions around the vortex core.

The result of the simulation shows that the quadruply
charged vortex splits into four parallel vortices, as shown in
Fig. 3(i). The splitting pattern is the same within the whole
condensate. Figures 3(e)—3(h) are images of the density,
axially integrated from z = —6.9 to 6.9 um, correspond-
ing to the experimentally observed central one-third of the
condensate taken with the tomographic imaging technique.
The main feature of our experiment, which is the deforma-
tion into the linear shape, is successfully reproduced in the
simulation. We performed additional numerical simula-
tions of the TOF process and verified that positions of
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the vortices relative to the condensate and the pattern
symmetry of the vortices are conserved.

Detailed look into the behavior of the linear defect
consisting of vortices shows a combined motion of “rota-
tion” and ‘‘precession” both in the experiment,
Figures 3(a)—3(d), and the simulation, Figs. 3(e)—3(h).
We define the axis of the linear defect and the average
position of the vortices as shown in Figs. 3(e)-3(h) as
dashed lines and crosses, respectively. Change of the angle
of this axis is rotation and the change of the angle of the
average position relative to the trap center is precession.

This combined motion can be understood by a velocity
field [12]. We assume a condensate with a TF density
profile in a model 2D system. To understand the rotational
motion, we must consider the fact that each of the four
singly charged vortices make a velocity field vy(r) = %
where r is the distance from the vortex core. Each vortex
follows the velocity field produced by the other three
vortices. The sum of velocities causes the rotation of the
defect, as illustrated in Fig. 2(a). If all of the vortices are
separated by a distance d, the period of rotation is 27 4
(inner pair of vortices) and 19—1 Z”Tm d? (outer pair). To under-
stand the precession, for each vortex at a radius r;, we
introduce an antivortex at a radius R3g/r;, in order to have
the particle flow velocity at the surface of the condensate
parallel to the surface [12], as shown in Fig. 2(b). The
velocity field of these image vortices causes the precession
of the original vortices. If all the vortices were at the same
place r; = 0.2Rr, the period was 272 R30.24. In general,
the distance between vortices is d < Rtg, and therefore,
the periods of rotation and precession have a similar time
scale. From Fig. 3(a) to 3(b), it is seen that the periods of
both the precession and the rotation are about 2 ms in the
experiment. The axis of the defect passes the center of the
condensate there, while it does not in Fig. 3(c). It means
that the rotational velocity slightly exceeds precessional
one. The aforementioned periods of the rotation 27’dez
(inner pair) and 19—1 277de2 (outer pair) also become about
2 ms when d = 0.5 pm. In the simulation, the periods of
rotation and precession are about 3 and 4 ms, respectively.
These periods from the experiment, simplified model, and
the simulation reasonably match each other.

We also checked these behaviors with different initial
displacements r;;;; = 0.05 to 0.15Rtr in the simulation.
The linear alignment of the vortex cores was reproduced
also in these cases. The distances between the vortices are,
however, much smaller and the density defect does not
reach the edge of the condensate. To reproduce the experi-
mental observation, r;,;; = 0.2Rtg is required. Therefore
we estimate that the initial displacement in the experiment
is around 0.2Ryg. In our experiment, the vortex displace-
ment observed at ¢ = 0 is smaller. Oscillation of the con-

densate during the formation of the vortex possibly causes
additional displacement after the observation at ¢ = 0.
Also, the existence of the my = +1 component possibly
affects the displacement observed at ¢ = 0 although it is
not confirmed due to noise in the observations.

In a condensate with a larger number of atoms, see arrow
B in Fig. 4(a), the twofold splitting should be dominant
only at the ends (where an, < 15), and the other splitting
should appear near the center of the condensate. Our 3D
simulation for a condensate of 2 X 10° atoms supports
these expectations. Therefore, it is possible to control the
symmetry of the splitting pattern by controlling the number
of atoms.
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