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The N-body problem in a tilted double well requires new features for macroscopic quantum superpo-
sition in ultracold atoms. In particular, one needs to go beyond the single-particle ground state in each
well. We provide explicit criteria for when two energy levels are needed to describe the state space. For
typical experimental parameters, two levels are indeed required for the creation of macroscopic
superposition states. Furthermore, we show that a small tilt causes the collapse of such states.
However, partial macroscopic superposition states reappear when the tilt can be compensated by atom-
atom interactions.
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Recently, Bose-Einstein condensates (BECs) in double-
well potentials have been the subject of diverse and excit-
ing research. For instance, such systems can be used to
search for deviations from Newtonian gravity at small
distances [1,2] and to store and retrieve optical information
[3]. Interest in these systems is not limited to practical
applications; BECs in double-well potentials also provide
an ideal medium for the study of fundamental quantum
many-body phenomena, such as macroscopic quantum
tunneling [4–8] and macroscopic superposition (MS)
states [9–12]. To describe these double-well systems, a
Hubbard-like Hamiltonian has often been employed
[13,14]. However, these studies not only assume that the
trapping potential is symmetric, but effects of excited
levels are completely neglected. Variational methods have
indicated that excited levels play a significant role [15–17].
Moreover, a multilevel picture of a tilted double-well po-
tential is required for the creation of a quantum computer
from neutral atoms [18,19], atom-chip-based gravity sen-
sors [1,2], and in the study of quantum transport pheno-
mena [20–22]. Thus, the current experimental context of
double-well potentials has created an urgent need for a
new theoretical analysis of the many-body double-well
problem.

In this Letter, we use a two-level Hamiltonian to inves-
tigate the stationary states of a BEC in a tilted, one-
dimensional (1D), double-well potential. A schematic of
our potential is shown in the inset of Fig. 1. In addition to
interaction with the electromagnetic vacuum [9], thermal
effects [11], and dissipation [12], we find that tilt also
causes the collapse of MS states when the barrier is high,
an effect we term potential decoherence. Unlike for other
forms of decoherence, such states reappear when the tilt is
compensated by atom-atom interactions. We call this a
tunneling resonance because tilt suppresses tunneling be-
tween wells except when these states reappear [23,24].
Finally, we present novel, formal bounds for the use of a
one-level approximation. This approximation is typically
thought to hold when the interaction energy is much
smaller than the energy level difference [17]. However,

we show that the effects of the excited energy level cannot
be neglected even in this regime.

Past studies of the N-body double-well problem have
focused on symmetric traps with one allowed energy level.
Such systems map onto other physical problems, including
a classical nonrigid pendulum [6] and the Lipkin-
Meshkov-Glick model from nuclear physics [25]. More-
over, a double-well potential coupled to a heat bath can be
used to study vibration modes in water molecules [26]. For
the symmetric one-level model, tunneling dynamics [6–
8,13] and the response to changes in experimental parame-
ters such as barrier height have been analyzed [9,10,27] in
various regimes. The behavior of the ground state energy in
a tilted double-well has been studied in the one-level
approximation [23]; however, applications such as quan-
tum information processing [18,19] call for a two-level
description. In our study of the double-well potential, we

FIG. 1 (color online). Energy eigenstates of a symmetric
double well. Shown are the probability amplitudes jc�k�n j for a
small range of Fock index n and energy eigenstate index k.
Amplitude is indicated by hue. The total number of atoms is N �
20; above the dotted line at Fock index n � 20, one atom
occupies the higher energy level; above the dotted line at n �
60, two atoms occupy the higher level, etc. Inset: schematic of
the double-well potential.
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relax two assumptions commonly made in previous studies
of similar systems: the symmetric trap assumption and the
one-level assumption. This leads to two new energy scales
in our problem.

An approximate two-level Hamiltonian for N weakly
interacting bosons in a tilted double-well potential is

 Ĥ � Ĥ0 � Ĥ1 � Ĥ01; (1)

where
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is the usual one-level Hamiltonian and
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can be derived from first principles quantum field theory
for weakly interacting bosons at zero temperature [28]. The
superscripts ‘, ‘0 2 f0; 1g are the energy level indices, the
subscripts j, j0 2 fL;Rg are the well or site indices, J‘ are
the tunneling energies, U‘ and U01 are the interaction
energies, E‘ is the energy of the ‘th excited level, and
�V is the tilt. Setting E0 � 0, the energy difference be-
tween levels, or level spacing, is E1 � @!. The extension
of Eq. (1) to an infinite number of sites leads to the two-
band Bose-Hubbard Hamiltonian.

The two-level Hamiltonian allows for on-site interac-
tions, tunneling between wells, and hopping between lev-
els. The tunneling terms J‘ allow single particles to tunnel
between wells in the same level. Pairs of particles in the
same well interact with interaction energy U‘ if they are in
the same energy level andU01 if they are in different levels.
Interactions can be either repulsive, U‘ > 0, or attractive,
U‘ < 0. Furthermore, while single-atom transitions be-
tween energy levels are forbidden, two atoms can hop
together between energy levels with amplitude U01.
Thus, the energy levels are coupled by the interlevel inter-
action energy U01. Interactions between atoms in different
wells are much smaller thanU0 and have been neglected in
Eq. (1). The parameters J‘, @!, and U‘ are determined by
overlap integrals of the localized single-particle wave
functions. Left- and right-localized wave functions are
constructed by superpositions of the appropriate symmet-
ric and antisymmetric eigenfunctions of the single-particle
Hamiltonian. While the interaction and tunneling energies
are independent parameters, J‘ and @! are not. The tun-
neling and interaction energies satisfy J0 	 J1 	 @!,
U1 � �3=4�U0, and U01 � �1=2�U0. In Figs. 1–3, we set
J0=@!�4
10�7 and J1=@!�3
10�5. Finally, we note
that the use of single-particle wave functions and only a
few levels is appropriate to the regime jNU0j & 2@!.
When jNU0j * 2@!, our approximation is inaccurate,
and alternative treatments become necessary [16,17,29].

An arbitrary state vector in Fock space is given by

 j�i �
X��1

n�0

cnjni; jni 2 fjn0
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0
Ri � jn

1
L; n

1
Rig; (4)

where n‘j is the number of particles in the ‘th level of the
jth well. We require the total number of particles in the
double well, N �

P
j;‘n

‘
j , to be constant. The Fock index n

increases with n0
L, n0

L � n
1
L, and n1

L. The dimension of the
Hilbert space is � � �N � 3��N � 2��N � 1�=6; in the
one-level approximation, this reduces to simplyN�1. The
energy eigenstates and eigenvalues of the Hamiltonian (1)
are given by Ĥj�ki � "kj�ki, for 0 � k � �� 1. The
probability amplitudes are defined as c�k�n � hnj�ki for
0 � n � �� 1. Throughout our treatment, we consider
the regime jNU0j 	 2@!. Furthermore, we work in the
high barrier limit J0 	 jU0j, as it is instrumental to the
creation of stationary MS states. For simplicity, we restrict
our discussion to repulsive interactions, U0 > 0 and posi-
tive tilt, �V > 0. However, our results hold forU0 < 0 and
�V < 0 as well.

Characteristic eigenstate amplitudes are shown in Fig. 1
for a symmetric trap. For a given n, the number of particles
in the excited level is equal to the number of horizontal
dashed lines below n. In the case of Fig. 1, mixing of levels
is negligible. The lowest excited group of eigenstates, for
instance, corresponds to full occupation of the lowest level.
Likewise, the eigenvalues occur in N � 1 groups approxi-
mately separated by the level spacing @!. As the number
of particles, the interaction energy, or the tilt increases,
the spacing between groups decreases, as in Figs. 2(a) and
2(b). In a symmetric trap, the first of many eigenvalue
crossings occurs when the condition

 U0 & U0
crit � 2@!=�N2 � 1�; (5)

is violated. When U0 * U0
crit, MS states with nonzero

occupation of the excited level emerge among the first
N � 1 eigenstates, and a two-level approximation must
be used. As the interactions increase, the lowest eigenstates
include MS states with successively larger occupation of
the excited level. Eventually, even the ground state will
have significant contributions from the excited level. In a
tilted potential, condition (5) becomes

 �V & �Vcrit

�

�
@!=N; U0 � U0

max

2U0�
������������������������������
1� 2�@!=U0�

p
� N� ; U0 >U0

max

; (6)

where we have defined U0
max � U0

crit�N � 1�=�4N�. These
results can be obtained formally in the limit of small
tunneling. In the opposite, noninteracting limit, we have
developed a formal criterion involving the hopping as well
[28]: N < 1=2� �@!� J1�=�2J0�.

While direct product states are not true eigenstates of the
two-level Hamiltonian for U0 > 0, the N � 1 lowest ex-
cited eigenstates have negligible contributions from the
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excited level when conditions (5) and (6) are met. In a
symmetric potential, these states are of the form

 j�;�i � j�;�i � j0; 0i; (7)

to (N � 2�� 1)th order in J0=U0 for 0 � � < N=2. Here,

 j�;�i � �j�;N � �i  jN � �; �i�=
���
2
p

(8)

represent partial MS states. To (N � 2�)th order in J0=U0,
the energy difference �"� of antisymmetric (�) and sym-
metric (�) pairs of states is

 �"� �
4U0�J0=�2U0��N�2��N � ��!

�!��N � 2�� 1�!�2
; (9)

which is a very small number. In the presence of a high
barrier, the eigenstates therefore occur in nearly degenerate
pairs of entangled states [9,10] when the potential is sym-
metric. Here, � � 0 represents the extreme MS state in
which all atoms simultaneously occupy both wells.
Characteristic probability amplitudes for the N � 1 lowest
eigenstates are shown in Fig. 3(a).

Because the level splitting between antisymmetric and
symmetric pairs is so small, small perturbations can mix
these states [9] and produce a localized state of the form
j�;N � �i � j0; 0i. Indeed, MS states are highly sensitive
to tilt �V, as illustrated in Fig. 3(b). The MS states of
Eq. (7) are destroyed when

 �V * 2�"�=�N � 2��: (10)

Small imperfections in the external potential thus consti-
tute a source of quantum decoherence. In addition to dis-
sipation and measurement, potential decoherence therefore
poses a further difficulty in the engineering of MS states in

experiments. Because condition (10) is minimized when
� � 0, extreme MS states are the most sensitive to imper-
fections in the double well, making them an unlikely can-
didate for experiments. Partial MS states, � > 0, on the
other hand, are more robust with respect to potential deco-
herence [30].

Despite their fragility, MS states reappear periodically
for certain values of the tilt. Such resonances occur when

 �V � �Vp � 2pU0; p 2 f1; 2; . . . ; N � 1g: (11)

In this case, the potential difference can be exactly com-
pensated by the interaction of p atoms in the lower well. To
(N � 2�� p� 1)th order in J0=U0, the energy eigen-
states are partial MS states of the form

 j�;�; pi � j�;�; pi � j0; 0i; (12)

 j�;�; pi � �j�;N � �i  jN � �� p; �� pi�=
���
2
p
;

(13)

for 0 � � < �N � p�=2. The reappearance of MS states is
shown in Fig. 3(c) for �V � �V3, i.e., the third resonance.
Because these states also occur in nearly degenerate pairs,
the tunneling resonances are easily identified by avoided
crossings in the energy eigenvalues, such as those dis-
played in Fig. 3(d). At odd integer values of �V=U0, the
eigenstates are maximally localized with the largest energy
splitting between pairs of states. Near a resonance, the
eigenstates become localized when

 j�V � �Vpj * 2�"p�=�N � 2�� p�; (14)

where �"p� / �J0=U0�N�2��p is the energy difference be-
tween the states j��;�; pi and j��;�; pi. For the special

FIG. 3 (color online). Potential decoherence and tunneling
resonances. Eigenstate probability amplitudes for a small range
of Fock index n and eigenstate index k for N�10, J0=U0 � 0:1,
and (a) �V=U0�0, (b) �V=U0�10�2, and (c) �V=U0�6.
(b) A small tilt collapses the stationary macroscopic superposi-
tion (MS) states. (d) Avoided crossings in the energy eigenvalues
indicate a reappearance of partial MS states, as in (c).

FIG. 2 (color online). Breakdown of the one-level approxima-
tion. Energy eigenvalues versus (a) interaction energy with
�V � 0 and (b) tilt with J0=U0 � 0:1 for a ten-atom system.
The thick dashed lines in panels (a) and (b) correspond to U0 �

U0
crit and �V � �Vcrit, respectively. Eigenvalue crossings cause

states with nonzero occupation of the excited energy level to
emerge among the N � 1 lowest-lying eigenstates.
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case � � 0, we find

 �"p0 �
4U0�J0=�2U0��N�p�N � p�

�N � p� 1�!

������������������������
N!

p!�N � p�!

s
; (15)

to (N � p)th order in J0=U0. Tunneling resonances are
vital in systems in which tilt is applied deliberately.

To demonstrate the robustness of the resonant MS states,
we consider N � 100 87Rb atoms in a 1D analog of the
double-well potential of Ref. [18]:

 V�x� � �v1cos2�2kx� � v2cos4�kx� �=4� ��; (16)

for kx 2 ���=4; 3�=4�, v2=v1 < 2, and � 2 �0; �=4�.
Here, k � 2�=� where � � 810 nm. We set v1 �
v2=0:15 � 106Er where Er=@ � 2�
 3:5 kHz is the re-
coil energy of the lattice [31]. The radial trapping fre-
quency is !? � 2�
 3:2 kHz. For such a potential,
@!=Er � 36, NU0=�2@!� � 0:10, and J0=U0 � 0:10.
The critical interaction energy and tilt are U0

crit=U
0 �

0:10 and �Vcrit=Er � 0:36, respectively. In a symmetric
trap, � � 0, the extreme MS states j�; 0; 0i will collapse
for deviations in the tilt on the order of 10�287Er. However,
at the 98th resonance, i.e., when �V � �V98 � 14Er, the
few-atom MS state j�; 0; 98i can withstand deviations in
the tilt up to0:098Er. The 98th resonance corresponds to
� � 0:52 1:2% [32]. Clearly, the many-body wave func-
tion protects partial MS states; a MS state of a few atoms
without the presence of a many-body cushion is not ex-
perimentally realistic [24].

In conclusion, we have shown that not one, but three
energy scales are required to describe macroscopic super-
position states of ultracold atoms in a double well: hop-
ping, tilt, and energy level spacing, all in ratio to
interaction. These energy scales arise naturally within the
context of quantum information processing with neutral
atoms. After solving the appropriate Hamiltonian, we
showed that tilt is a prevalent source of quantum decoher-
ence which cannot be neglected in experiments. Moreover,
we provided simple, formally derived criteria for when all
three energy scales are required. Our treatment of the two-
level double-well potential was restricted to 1D for sim-
plicity. While all considerations made here also apply to
2D and 3D, there is one very important difference. In the
latter case, angular momentum associated with the excited
state in each well introduces another quantum number, as
we analyze in detail elsewhere [28].
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