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Transport in metals with a strongly anisotropic single-particle spectrum is studied. Coherent band
transport in all directions, described by the standard Boltzmann equation, is shown to withstand both
elastic and inelastic scattering as long as EF�� 1. A model of phonon-assisted tunneling via resonant
states located in between the layers is suggested to explain a nonmonotonic temperature dependence of the
c-axis resistivity observed in experiments.
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Electron transport in layered materials exhibits a number
of unusual properties. The most striking example is a
qualitatively different behavior of the in-plane (�ab) and
out-of-plane (�c) resistivities: whereas the temperature
dependence of �ab is metallic-like, that of �c is either
insulating-like or even nonmonotonic. At the level of non-
interacting electrons, layered systems are metals with
strongly anisotropic Fermi surfaces. A commonly used
model is free motion along the planes and nearest-neighbor
hopping between the planes:

 "k � k2
jj
=2mab � 2J�1� cosk?d�; (1)

where kjj and k? are in the in-plane and c-axis components
of momentum, respectively, mab is the in-plane mass, and
d is lattice constant in the c-axis direction. For the strongly
anisotropic case (J� EF), the equipotential surfaces are
‘‘corrugated cylinders.’’

If the Hamiltonian consists of the band motion with
spectrum (1) and the interaction of electrons with potential
disorder as well as with inelastic degrees of freedom, e.g.,
phonons, the Boltzmann equation predicts that the conduc-
tivities are given by

 �Bab � e2�hvavb�tri; �Bc � 4e2�J2d2hsin2�k?d��tri;

(2)

where h. . .i denotes averaging over the Fermi surface and
over the thermal (Fermi) distribution, � � mab=�d is the
density of states, and �tr is the transport time, resulting
from all scattering processes (we set @ � kB � 1). If �tr

decreases with the temperature, both �ab and �c are ex-
pected to decrease with T as well. This is not what the
experiment shows.

The c-axis puzzle received a lot of attention in connec-
tion to the high Tc materials [1], and a non-Fermi-liquid
nature of these materials was suggested to be responsible
for the anomalous c-axis transport [2]. However, other
materials, such as graphite [3], TaS2 [4], Sr2RuO4 [5],
organic metals [6], etc., behave as canonical Fermi liquids
in all aspects but the c-axis transport. This suggests that the
origin of the effect is not related to the specific properties
of high Tc compounds but common for all layered materi-

als. A large number of models were proposed to explain the
c-axis puzzle. Despite this variety, most authors seem to
agree that the coherent band transport in the c-axis direc-
tion is destroyed. Although there is no agreement as to
what replaces the band transport in the ‘‘incoherent’’ re-
gime, the most frequently discussed mechanisms include
incoherent tunneling between the layers, assisted by either
interplane impurities [7–10] or by coupling to dissipative
environment [11], and polarons [12,13]. Recent experi-
ment [14] has shown that the c-axis resistivity is reduced
by introducing defects into a clean organic metal
�-�BEDT-TTF�2-Cu�SCN�2. This observation gives strong
support to the scenario of transport through interplane
impurities.

The message of this Letter is twofold. First, we observe
that neither elastic or inelastic (electron-phonon) scattering
can destroy band transport even in a strongly anisotropic
metal as long as the familiar parameter EF� is large.
Nothing happens to the Boltzmann conductivities in
Eq. (2) except for �Bc becoming very small at high tem-
peratures so that other mechanisms, not included in Eq. (2),
dominate transport. Second, we propose tunneling through
resonant impurities as the mechanism competing with the
band transport. As such tunneling provides an additional
channel for transport, the total conductivity is [7,14,15]

 �c � �Bc � �res; (3)

where �res is the resonant-impurity contribution. If �res

increases with T, the band channel is short-circuited by the
resonant one at high enough temperatures. Accordingly,
�c � ��1

c goes through a minimum at a certain tem-
perature. There are a number of mechanisms that can
lead to an increase of �res with T, e.g., the energy depen-
dence of the transmission coefficient. Here, we focus on a
generic mechanism of phonon-assisted tunneling through
a wide band of resonant levels and illustrate the feasibility
of this mechanism for two materials: Sr2RuO4 [5] and
�-�BEDT-TTF�2-Cu�SCN�2 [14].

Because of a similarity between phonon-assisted tunnel-
ing and other problems, in which interaction leads to the
formation of a cloud surrounding the electron (such as
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polaronic effect and zero-bias anomaly), many ideas put
forward earlier [7–13] agree with our picture. Never-
theless, we believe that only a combination of resonant
impurities and electron-phonon interaction solves the
puzzle of c-axis resistivity and provides a microscopic
theory for some of the mechanisms considered in prior
work. We begin with the discussion of the breakdown (or
lack of it thereof) of the Boltzmann equation.

One may wonder whether the band transport along the
c-axis breaks down because the Anderson localization
transition occurs in the c-direction whereas the in-plane
transport remains metallic. This does not happen, however,
because Anderson localization occurs either simulta-
neously in all directions [for J < ��1 exp��EF��] or in
none [16–18]. On a more intuitive level, quantum interfer-
ence—the cause of localization—for trajectories along
the c-axis is destroyed by the in-plane motion, while
interference of in-plane trajectories is destroyed by the
motion in the c-direction. Therefore, as long as an electron
remains delocalized in any of these directions, it remains
delocalized in others as well, and Anderson localization
cannot explain the observed behavior.

References [19,20] suggested an idea of the ‘‘coherent-
incoherent crossover.’’ It implies that the coherent band
motion breaks down if electrons are scattered faster than
they tunnel between adjacent layers, i.e., if J�� 1.
Consequently, the current in the c-direction is carried via
incoherent hops between conducting layers. It was noted
by a number of authors that the assumption about incoher-
ent nature of the transport does not, by itself, explain the
difference in temperature dependences of �ab and �c
[20,21]: due to conservation of the in-plane momen-
tum, �c is proportional to � both in the coherent and in-
coherent regimes. Nevertheless, an issue of the ‘‘coherent-
incoherent crossover’’ poses a fundamentally important
question: can scattering destroy band transport only in
some directions, if the spectrum is anisotropic enough
[22,23]? We argue here that this is not the case.

Since we have already ruled out elastic scattering, this
leaves the inelastic one as a potential culprit. We focus on
the case of the electron-phonon interaction as a source of
inelastic scattering. For an isotropic metal, the quantum
kinetic equation is derived from the Keldysh equations of
motion for the Green’s function via the Prange-Kadanoff
procedure [24] for any strength of the electron-phonon
interaction.

In this Letter, we apply the Prange-Kadanoff theory to
metals with anisotropic Fermi surfaces. We show that,
exactly as in the isotropic case, the Boltzmann equation
holds its standard form as long as EF�e-ph � 1. Since this
form does not change between coherent (J�e-ph � 1) and
incoherent (J�e-ph � 1) regimes, it means that the
coherent-incoherent crossover is, in fact, absent.

We adopt the standard Frölich Hamiltonian for the
deformation-potential interaction with longitudinal acous-
tic phonons (!q � sq�

 

H �
X
k

�ka
y
kak �

X
q
!qb

y
qbq

�
X
k;q

gq
�������
!q
p

ayk�qak�bq � b
y
�q�: (4)

Since tunneling matrix elements are much more sensitive
to an increase in the interplane distance than elastic mod-
uli, the anisotropy of phonon spectra in layered materials,
albeit significant, is still weaker than the anisotropy of
electron spectra (see, e.g., Ref. [25]). Therefore, we treat
phonons in the isotropic approximation and assume that
the magnitude of the Fermi velocity is larger than the speed
of sound s.

For a static and uniform electric field, the Keldysh
component of the electron’s Green function satisfies the
Dyson equation

 2L̂GK� i�Re�R;GK	� i��K;ReGK	� f�K;Ag�f�;GKg:

(5)

Here, L̂ � �@t � v 
 rR � eE 
 rk� is the Liouville opera-
tor, and A � i�GR �GA� is the spectral function, � �
i��R � �A�. Thanks to the Migdal theorem, the self-
energy does not depend on electron’s dispersion �k �
"k � EF, and Eq. (5) can be integrated over �k. This
results in an equation

 L̂gK �
i
2
�Re�R; gK	� � 2i�K �

1

2
f�; gKg (6)

for the ‘‘distribution function’’ gK��; n̂� � �i=���R
GK��; �k; n̂�d�k, where n̂ � vk=jvkj.
We consider a linear dc response, when the self-energy

is needed only at equilibrium. Within the Migdal theory,
the Matsubara self-energy is given by a single diagram

 ���;n̂���
Z d!

2�

Z d3q

�2��3
g2�q�G���!;k�q�D�!;q�;

where the dressed phonon propagator, D�1 � D�1
0 �

g2�, is expressed through the bare one, D0�!; q� �
�s2q2=�!2 � s2q2�, and polarization operator � which,

for EF > 2J, is given by its 2D form ��!; q� � ���1�

j!j=
�����������������������
v2
Fq

2
k
�!2

q
�. We assume that the electron-phonon

vertex decays on some scale kD shorter than Fermi mo-
mentum (kD � kF). This assumption allows one to line-
arize the dispersion �k�q  �k � vk 
 q and simplifies the
analysis without changing the results qualitatively. As long
as J� EF, we have jvkj  kF=mab  vF, where kF is the
radius of the Fermi surface for J � 0. Despite the fact that
the electron velocity does have a small component along
the c-axis, its in-plane component is large. Since it is the
magnitude of vk that controls the Migdal’s approximation,
the problem reduces to the interaction of fast 2D electrons
with slow 3D phonons. With these simplifications, we find

 �R��; n̂� � �
1

4

	
1� 	

�
kD
kF

�
2
�� i

	

12�1� 	�2
j�j3

!2
D

(7)
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where 	 � �g2 is a dimensionless coupling constant and
!D � skD. We see that, despite the strong anisotropy, the
self-energy remains local, i.e., independent of �k.

Vertex renormalization leads to two types of corrections
to the self-energy: those that are proportional to the
Migdal’s parameter (s=vF) and those that are proportional
to ms2=�. The second type of corrections invalidates the
Migdal’s theory for temperatures below ms2, which is
about 1 K in a typical metal. For metals with anisotropic
spectrum, the existence of such a scale is potentially dan-
gerous, since it is not obvious which of the masses (light or
heavy) defines this scale. We find that the in-plane mass
(mab) controls the vertex renormalization for the nearly
cylindrical Fermi surface. This shows that the Migdal
theory for layered metals has the same range of applica-
bility as for isotropic metals [26].

The rest of the derivation proceeds in the same way as
for the isotropic case [24], and the resulting Boltzmann
equation assumes its standard form. Since no assumption
about the relation between �e-ph and the dwell time (1=J)
has been made, the conductivities obtained from the

Boltzmann equation have the same form regardless of
whether J�e-ph is large or small. In other words, there is
no coherent-incoherent crossover due to inelastic scatter-
ing in an anisotropic metal [28].

The situation changes qualitatively if resonant impuri-
ties are present in between the layers. Electrons that tunnel
through such impurities are moving with the speed con-
trolled by the broadening of a resonant level, i.e., much
slower than speed of sound. For that reason, they can not be
treated within the formalism outlined above and require a
separate study.

To evaluate the resonant-impurity contribution to the
conductivity, we assume that the impurities are randomly
distributed in space with density nimp whereas their energy
levels uniformly distributed over an interval Eb. The tun-
neling conductance of a bilayer junction is

 G � �e2
Z
d�d�0W�;�0

�
@n�
@�
�1� n�0 � �

@n�0

@�0
n�

�
; (8)

where W�;�0 is a transition probability per unit time and n�
is the Fermi function. For a single impurity [29,30],

 

W�;�0 ��L�R

Z 1
�1
dt1eit1��

0���
Z 1

0
dt2dt3ei�t2�t3����

��0����t2�t3�

�exp
�
�
X
q

j
qj
2

2!2
q

�
j1�e�i�3�ei�1�e�i�2�1�j2 coth

�!q

2T

�
��e�i�3�ei�2�ei�1�e�i�2�1��1�ei�3��c:c:	

��
; (9)

where �i � !qti (i � 1 . . . 3), 
q � �i�q=
�����������!q
p , � is

the deformation-potential constant, �L and �R are tunnel-
ing widths of the resonant level, � � �L � �R, and ��0 is
the energy of a resonant level renormalized by the electron-
phonon interaction. In the limit of no electron-phonon
interaction, Eq. (9) reproduces the Breit-Wigner formula.
From now on, we consider a wide band of resonant levels:
Eb � T � �. Averaging Eq. (9) over spatial and energy
positions of resonant levels, we obtain
 

�res ��el

Z 1
�1

dt
i�T2t

sinh2��Tt� i0�
e��f�t�

f�t� �
Z !D

0
d!

!

!2
D

�
�1� cos�!t�	coth

�
!
2T

�
� i sin�!t�

�
:

(10)

Here, �el is the conductivity due to elastic resonant tunnel-
ing, and � � �2!2

D=�s
5�2 is the dimensionless coupling

constant for localized electrons. In the absence of electron-
phonon interaction, �res is temperature independent and
given by �el ’ �e

2�1nimpa0d=Eb [31], where a0 is the
localization radius of a resonant state and �1 /
�0pFe

�d=a0=�p2
F � a

�2
0 �d is its typical width. We note

that the electron-phonon interaction is much stronger for
localized electrons than for band ones: �=	 � �kFd��
�vF=s� � 1. Since typically 	 � 1, one needs to consider
a nonperturbative regime of phonon-assisted tunneling. In
that case, resonant tunneling is exponentially suppressed at

T � 0: �res�T � 0� � �ele��=2. At finite T, we find

 �res � �el

(
e��=2�1� �2�

3 �
T
!D
�2	; T � !D���

�
p ;

1� �
9
!D
T ; T � �!D:

As T increases, �res growth, resembling the zero-bias
anomaly in disordered metals and Mössbauer effect. At
high temperatures (T � �!D), �res approaches the non-
interacting value (�el). The asymptotic regimes in the
interval !D=

����
�
p
� T � �!D can also be studied, but

we will not pause for this here. Depending on the parame-
ters of the Boltzmann and tunneling parts of the conduc-
tivity, the total resistivity may exhibit a variety of T
dependences: purely metallic (for weak tunneling), purely
insulating (for strong tunneling), minimum at low T, maxi-
mum at high T, and both minimum and maximum. All of
this behaviors are observed in the experiment. For ex-
ample, �c (i) is purely metallic in overdoped high Tc
cuprates; (ii) has a minimum in underdoped ones [1];
(iii) is purely insulating in TaS2 [4]; (iv) has both a mini-
mum and a maximum in graphite [32]; and (v) has a
maximum in Sr2RuO4 [5], �-�BEDT-TTF�2-Cu�SCN�2
[14], �Bi0:5Pb0:5�2Ba3Co2Oy and NaCo2O4 [23]. Defer-
ring a detailed analysis of all possibilities to a future pub-
lication [33], we focus now on two of the materials with a
maximum in �c: Sr2RuO4 and �-�BEDT-TTF�2Cu�SCN�2.
We extract �Bc from the low-temperature [between 10 and
50 K c-axis resistivity of Sr2RuO4 and between 40 and
75 K for �-�BEDT-TTF�2Cu�SCN�2] and extrapolate it to
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higher temperatures. The resonant part of the conductivity
is calculated numerically using Eq. (10). The fits to the data
for Sr2RuO4 and �-�BEDT-TTF�2Cu�SCN�2 are shown in
the left (right) panels of Fig. 1. The quality of the fits and
reasonable values of the parameters suggest that the
phonon-assisted model is a viable mechanism of the
c-axis anomaly at least in these compounds.

To conclude, we have shown that the Boltzmann
equation and its consequences are as robust for aniso-
tropic metals as they are for isotropic ones. The only
condition controlling the validity of the Boltzmann equa-
tion is the large value of EF�. Interplane localized
states change the c-axis transport radically. An interplay
between phonon-assisted tunneling and conventional mo-
mentum relaxation causes insulating or nonmonotonic de-
pendence of �c on temperature. This model is in a good
agreement with the experimental data on Sr2RuO4 and
�-�BEDT-TTF�2-Cu�SCN�2.

This research was supported by No. NSF-DMR-
0308377. We acknowledge stimulating discussions with
B. Altshuler, A. Chubukov, S. Hill, P. Hirschfeld,
N. Hussey, P. Littlewood, D. Khmelnistkii, N. Kumar,
Yu. Makhlin, A. Mirlin, C. Pépin, M. Reizer,
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FIG. 1 (color online). �c vs temperature. Solid line: experi-
mental data; dashed line: fit into the phonon-assisted tunneling
model. Left: Sr2RuO4 (Ref. [5]). Fitting parameters: �el � 47�
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�-�BEDT-TTF�2-Cu�SCN�2 (Ref. [14]). Fitting parameters:
�el � 1:5 ��1 cm�1, !D � 140 K, � � 18:9.
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