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We present a critical analysis of the density functional description for capillary wave fluctuations on
free liquid surfaces. The proposal made by Mecke and Dietrich, [Phys. Rev. E 59, 6766 (1999)], to obtain
the effective wave vector dependent surface tension, and their prediction of an enhanced regime of
capillary waves at mesoscopic scales, has had a large impact including claims of experimental observation
[Fradin et al., Nature (London) 403, 871 (2000); Mora et al., Phys. Rev. Lett. 90, 216101 (2003)]. Our
analysis shows that there is a qualitative problem in the convergence of the low q expansion used for that
prediction, and that the assumed link between the equilibrium density functional description of the liquid
surface and its capillary wave fluctuations leads always to the unphysical decrease of the surface tension
for large wave vectors.
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The capillary wave (CW) thermal fluctuations on the
interface between two fluid phases were described by
Smoluchowski and Mandelstam as a qualitative aspect
missing in van der Waals (vdW) theory of liquid surfaces
[1]. A century later, the density functional (DF) formalism
has generalized vdW theory, and provided valuable infor-
mation on the dependence of the surface structure with
temperature, intermolecular forces, or the chemical com-
position of fluid mixtures [2]. The accuracy of these pre-
dictions has been systematically improved with the use of
better DF approximations, but still all the density profiles
�DF�z� share the same fundamental flaw of vdW theory:
their lack of dependence on the surface area, in contrast
with the expected smoothening of ��z; A� for increasing
surface area A, unless a (gravity) external potential damps
the long wavelength CW fluctuations. The capillary wave
theory (CWT) [3] provided the modern theoretical frame-
work to include the effects of the CW fluctuations over an
intrinsic density profile ~��z�, strictly independent of A,
which represents the equilibrium distributions of relative
distance from the molecules to the intrinsic surface, a
mathematical surface z � f�R�, with the vector R �
�x; y� on the plane of the macroscopic interface, to repre-
sent the instantaneous boundary between the coexisting
bulk phases. However, the CWT does not specify the shape
of f�R� associated to each molecular configuration, and its
connection with the molecular structure is based on em-
pirical assumptions for the shape of ~��z�, and for the
effective surface Hamiltonian H �f�, which describes the
fluctuations of the intrinsic surface. There are some spe-
cific proposals for operational definitions of f�R� in com-
puter simulations [4–6], but only recently they are
becoming a regular tool for the analysis of liquid surfaces
[7,8], and so far without firm connection with DF theory.

In 1999, Mecke and Dietrich [9] made a proposal to link
the DF and the CWT descriptions of a liquid surface. They
suggested that the density profile �DF�z� should be re-
garded as the intrinsic density profile ~�0�z�, associated to
a flat intrinsic surface, and that the surface Hamiltonian
H �f� could be obtained as

 H DF�f� � ���f�r�� ����DF�z��; (1)

i.e., the grand potential increases when the DF equilibrium
density profile is deformed into a distribution �f�r� which
follows the shape of the intrinsic surface z � f�R�, with
r � �R; z�. The expansion at quadratic (Gaussian) order on
the intrinsic surface Fourier components, f̂q, gives

 H �f� �
A
2

X
q

q2��q�jf̂qj
2 �O�f̂4�; (2)

with a q-dependent bare surface tension ��q�, extending
the original CWT assumption H �f� � �A�f� � A��with
a constant � times the increment from the nominal (macro-
scopic) area A, to that of the intrinsic surface,

 A �f� � A�
A
2

X
q

q2jf̂qj
2 �O�f̂4�: (3)

The functional form (2) leads to independent Gaussian
probabilities for f̂q, with mean squared values hjf̂qj2i �
kBT=�A��q�q2�, so that the DF predictions for ��q� could
be compared with the observed CWamplitude distributions
in experiments or computer simulations.

The self-consistent use of any DF approximation [1,2]
guarantees that the q � 0 limit of ��q�, defined in (1) and
(2) is exactly equal to the grand potential surface excess
�DF. Previous results based on a step function ~�0�z� [10]
gave an always decreasing function ��q�, which would
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imply unphysically large CW fluctuations at molecular
scale, while the use of a smooth ~�0�z� in [9] provided the
expected growth, ��q� 	 �q2=2, with positive � for large
q, but still keeping��q�<�DF for a finite range at small q,
as shown in Fig. 1. That implies mesoscopic enhanced
capillary waves with amplitude larger than the macro-
scopic CWT prediction. Such peculiar result has had a
large impact [11], including claims of experimental obser-
vations [12]; however, the interpretation of the experimen-
tal data presents technical difficulties [13]. Here we
address the original theoretical prediction in two aspects:
we first show that the consistent use of (1) and (2) leads to
an always decreasing ��q�, and then we analyze the origin
for such unphysical decay at large q.

H �f� in (1) requires us to specify the corrugated density
profile �f�r� associated to each intrinsic surface shape z �
f�R�. The simplest choice would be

 �f�r� � �DF�z� f�R�� � ~�0�z� f�R��; (4)

which corresponds to a shift of the molecular positions,
following the corrugations of the intrinsic surface, as in the
classical CW assumption that the intrinsic profile is un-
correlated with the shape of f�R�. We refer to this density
distribution as the unrelaxed one, to distinguish it from the
generic prescription [9] in which �f�r� results from the
minimization of ���f� over the restricted functional sub-
space assumed to be compatible with the shape of f�R�.
Different choices for that subspace could be regarded as
variant implicit definitions of f�R�. In a remarkable ana-
lytical effort, Mecke and Dietrich worked out the leading
order terms in the low q expansion for the relaxation of
�f�r�, which emanate from the local curvatures of f�R�.
The functional form was then expanded in the Gaussian
approximation (2), and evaluated within a simple DF ap-

proximation, made of a mean field description of the
attractive interactions, plus a local density approximation
for the molecular hard cores. The negative second deriva-
tive of ��q� at low q appears as a generic result of the
attractive interactions, including anomalies for power-law
decaying interactions. The minimum of ��q� comes from
the balance between that contribution and the �q2=2 term
from the hard cores.

We have to point that, despite its formal definition, the
restricted minimization of ���f�, over the functional sub-
space compatible with f�R�, was not performed in [9].
Instead, the result of such optimization was obtained in
terms of the local curvatures of f�R�; the amplitude of the
only relevant term for the Gaussian approximation (2) was
noted by CH, and estimated from at its low-q limit. That
fixed value of CH was then used to obtain the large-q
positive bending coefficient �, and the full shape of ��q�,
in Eqs. (2.32) and (3.11) of [9]. The unrelaxed result for
H �f�, from the direct use of (4) into (1), corresponds to
the choice CH � 0, and it leads to the full line in Fig. 1.
This unrelaxed ��q� has a qualitative difference with the
(dotted line) results of Ref. [9], since it gives a monotoni-
cally decreasing ��q�, going like q�2 for large wave vec-
tors. That decay comes from the fact that the large-q
bending coefficient is quadratic in CH, so that it fully
disappears in the unrelaxed estimation of H �f�. It is clear
that any restricted minimization of ���f�r�� over the cor-
rugated density distributions compatible with f�R� should
be below the unrelaxed estimation, so that the rise of ��q�
at large q implies an inconsistent use of the curvature
relaxation. We may keep the functional form for �f�r� as
in [9], but useCH�q� as an independent variational parame-
ter used to minimize H �f�. This variational result for��q�
is the broken line in Fig. 1, which is always below the
unrelaxed result, but fairly close to the original prediction
for low q. The macroscopic limit for the curvature relaxa-
tion of the density distribution estimated in [9] is fairly
accurate up to q� � 1, so that it gives directly (without
explicit minimization) a result for ��q� very close to the
variational minimum within the free-CH�q� functional sub-
space. However, for q� > 1, plugging the macroscopic
relaxation, with fixed CH, into the low q expansion for
��q� leads to the (spurious) increase of ��q� over its un-
relaxed value. The apparent safeguard of the �q2=2, to
keep the physically expected increase of ��q� at large q, is
destroyed by the q�2 decay in the amplitude of the curva-
ture correction, which was assumed to be constant in [9].
Thus, for large q the curvature modulus goes like �
 q�4,
and the optimal ��q� follows closely the unrelaxed q�2

decay.
There is a generic explanation for the unphysical decay

of the DF��q� at large q. The ideal gas free energy, and the
�N��� contributions to ���� are unaffected by the unre-
laxed corrugation of �DF�z�, since they are local DFs, and
(4) is a mere shuffling of the relative positions. The whole
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FIG. 1. The dotted line represents ��q�=�DF from Ref. [9],
with the parameters CH � 0:5 and �ro � 1 defined in that work.
The full line gives the result from the unrelaxed density distri-
bution (4), which is an upper bound for the DF prescription (1)
and (2). The dashed line shows the relaxation effects when
CH�q� is used as a free variational parameter.
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H �f� defined in (1) comes from the excess free energy
F ex���, with nonlocal measures based on the molecular
size and interaction range, which we denote by ro. Any
intrinsic surface corrugated only with Fourier components
f̂q for qro � 1, would give a value of F ex��f� similar to
that for a smoothed planar h�f�r�iR, defined as the trans-
verse average of �f�r�. From (4) that profile is the con-
volution of �DF�z� with a Gaussian of square widthP
qjf̂qj

2, and within the quadratic approximation (2) it
becomes h�f�r�iR 	 �DF�z� �

1
2�
00

DF�z�
P
jf̂qj

2 � . . . ,
with the second derivative of the density profile.

At linear order in a DF expansion from �DF�z�, we
evaluate F ex��f� from its first functional derivative, and
use the equilibrium DF condition to get

 H DF�f� 	
A
2

Z
dz

kBT
�DF�z�

��0DF�z��
2
X
q

jf̂qj
2; (5)

valid for any f�R� made only of large q Fourier compo-
nents. The comparison of this expression with (2) makes
clear the problem: for CW with large q the DF prescription
(1) for H �f� depends on the width of the intrinsic surface
corrugations,

P
jf̂qj2, and not on their area (3), which

grows like
P
q2jf̂qj

2. Casting this H DF�f� in terms of
area increments leads to the unphysical result of vanishing
surface tension for large q,

 

��q�
��0�

��������DF
	
kBT

q2

Z
dz
��0DF�z��

2

�DF�z�



kBT

�liqq
2

��liq � �vap�
2

��DF
:

With DF classical exponents q2��q�=��0� would be a
smooth function of T up to the critical point. The local
density approximation used for the molecular hard cores in
[9] changes kBT=�DF�z� into the (larger) second derivative
of the hard sphere free energy density, f00hs���. As shown in
Fig. 3, improved DF approximations with nonlocal de-
scription of the molecular cores, produce a further decrease
on the estimation for �DF�q� for large q, with respect to
that in [9].

The bad convergence of the q expansion in [9], leading
to spurious results already for q� 	 1:2, comes from the
lack of separation between those fluctuations which are
already included in any �DF�z� [14], and those which have
to be added as corrugations of the intrinsic profile. The
sketch in Fig. 2 gives a pictorial view of the problem,
showing that the shift of the molecular positions along a
nominal CW deformation z � f�R� would only be identi-
fied as a physical surface modulation for very long wave-
lengths. The CW length in the lower frame is still much
larger that the molecular size, but its amplitude could not
be inferred from the molecular positions. Without the
labeling of the molecules at the surface, the snapshot
would be interpreted as that of a distorted planar surface,
representing a deviation from the equilibrium configura-
tion of the top frame, and associated to a grand potential
energy excess (1) proportional to the macroscopic area A,

without any dependence on the intrinsic surface area (3). In
the middle frame the wavelength is large enough to keep
the modulation at molecular level, but still the amplitude of
f̂q from the molecular positions would probably under-
estimate its nominal value.
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FIG. 3. Computer simulation results for ��q�, in a Lennard-
Jones liquid surface, with a local Gibbs dividing surface (dotted
line), and a percolation-interpolation recipe (thick line with error
bars). The thin full line reproduces the DF results from Fig. 1,
and the dash-dotted line includes a nonlocal treatment of the
hard cores.
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FIG. 2. The top panel sketches a molecular configuration of the
surface, and its equilibrium density profile �0�z�, associated to a
flat intrinsic surface (dashed line). The molecules at the surface
could be identified as the filled circles, with a (crossed) over-
hang. The two lower frames show the configurations obtained by
the translation of the molecules along the z direction, following
the nominal corrugation of the intrinsic surface given by the
(displaced) wavy lines. The density profiles on the right of the
lower frames represent the smoothed version of �0�z�, produced
by such corrugation.
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Our main conclusion is that the proposed DFT-CWT
link (1) gives unphysical ��q� for large q. The problem
is not in the form (4) for the density distribution associated
to a corrugated liquid surface, since any other choice for
�f�r� would only enhance the spurious decay of ��q�. A
most valuable hint to the root of the problem comes from
the mean square CW amplitudes averaged along computer
simulations, hjf̂qj2i, which give direct access to ��q� �
kBT=�Ahjf̂qj2iq2�, for q � 2�=Lx, in terms of the trans-
verse size of the simulation box Lx. The shape of ��q� is
strongly dependent on the definition used to get f�R� from
the molecular positions. It is computationally cheap to
define f�R� as a local Gibbs dividing surface [5], but that
gives unphysical dependence of ��q� with the depth of the
simulated liquid slab, and the same qualitatively problem
than the DFT results from (1), i.e., the spurious decay for
large q, as presented in Fig. 3 for a Lennard-Jones (LJ)
liquid surface near its triple point [6]. Both problems come
from the lack of separation between the bulk and surface
fluctuations. Computationally, more demanding choices
define the first liquid layer, by some kind of percolation
analysis [4,6,8], and then f�R� from a smooth interpolation
between the molecular positions. Although the shape of
��q� still has some dependence on the details of the
method, it is qualitatively correct at large q, since f̂q
becomes small [and hence ��q� large] for corrugations
shorter than the molecular size, as shown in Fig. 3 for a
state of the art recipe [15], applied to the same LJ liquid
surface as the local Gibbs dividing surface. Notice that we
cannot fully rule out the presence of a narrow low-q region
with ��q� & ��0�, as it would correspond to the validity of
the suggested DF link [9] for the first correction beyond the
exact ��0� � �DF identity, but even in that case, the rapid
increase of ��q� would frustrate the appearance of any
measurable enhancement of the capillary waves at meso-
scopic wavelengths.

The crucial difference between the methods to define
f�R� in computer simulations is that (like in a DF treat-
ment) the local Gibbs dividing surface uses only the one-
particle distributions, while any percolation-interpolation
method depends on many-particle correlations. The de-
scription of a corrugated liquid surface by a restricted
one-particle distribution �f�r�, cannot represent the full
molecular constrains of a physical short wavelength corru-
gation. The molecular configurations compatible with a
f�R� have to be selected in terms of many-particle distri-
butions, in a sharper selection which increases the free
energy associated to each surface shape. Thus, H �f� and
��q� would be pushed up from the unphysically low DF
value at large q corrugations. The open theoretical chal-
lenge is to find the method to include those many-particle
constrains, and to evaluate the restricted free energy of the
corrugated surface, with a good control on the threshold
between the mesoscopic description of the liquid surface as
z � f�R� and its molecular discreteness, as done in the

percolation-interpolation schemes for the intrinsic surface
sampling in computer simulations.
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