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Inertial modes are oscillatory modes in rotating fluids. Shear layers appear in inertial modes in spherical
shells that become singularities in the inviscid limit. It is shown here that the nonlinearity in the shear
layers drives a zonal flow whose amplitude diverges in the inviscid limit. These results are relevant for the
dynamics of planets and stars in which inertial modes are excited by tidal forcing.
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Rotating bodies of fluid support oscillatory motion
known as ‘‘inertial waves’’ or ‘‘inertial modes.’’ The
mathematical description of these modes starts from the
linearized Navier-Stokes equation. Applications in geo-
and astrophysics involve motions for which the dissipation
term is small so that one is interested in the double limit of
small amplitudes (which justifies linearization) and small
viscosity. The linear inviscid problem is ill posed and
smooth solutions exist only in special geometries such as
a full sphere [1]. The spherical shell has been studied in
detail because of its geo- and astrophysical relevance [2,3].
The ill posedness in this case leads to singularities in the
form of shear layers on conical surfaces coaxial with the
axis of rotation. The ‘‘critical latitudes’’ are those latitudes
at which these conical surfaces are tangent to the bounda-
ries. Shear zones are generated at critical latitudes, extend
through the fluid volume, and reflect from the boundaries.
Reflection conserves the angle formed by the normal to a
shear layer with the rotation axis, and not the angle formed
with the normal to the reflecting surface. Thanks to this
peculiar reflection law, shear zones generally are focused
on attractors after multiple reflection. A similar phenome-
non exists for gravity waves in stably stratified fluids [4]. It
has been emphasized in the past that the mathematical
structure of this problem is related to quantum chaos and
quantum billiards, and even to problems arising in general
relativity [5].

In this Letter, the nonlinear term is included for the first
time in numerical computations of inertial modes. It is
shown that, in a spherical shell, the nonlinear interaction
of an inertial mode with itself excites an axisymmetric flow
whose amplitude diverges with decreasing Ekman number.
This effect is due to the internal shear layers alluded to
above. The results show that inertial modes excited by tides
can drive significant zonal flows in planetary cores and in
the atmosphere of gaseous planets. With the tidal applica-
tion in mind, all the examples of eigenmodes studied here
have an azimuthal wave number of 2.

Consider a spherical shell with gap size d filled with
incompressible fluid of viscosity � rotating about the z axis
at angular velocity �. Using as units of time and length
1=� and d, respectively, the adimensional equation of

motion for the velocity v�r; t� becomes in the corotating
frame of reference:

 

@
@t
v� �r� v� � v� 2ẑ� v � �rp� Ekr2v; (1)

 r � v � 0; (2)

where ẑ is the unit vector in the z direction. All gradient
terms (pressure, centrifugal force, and rv2=2) are col-
lected in rp. The Ekman number Ek is defined by Ek �
�=��d2�. The inner and outer boundaries of the shell have
radii ri and ro with ro � ri � 1. On these boundaries, the
radial component of the velocity must vanish and, through-
out this Letter, the tangential stress is required to be zero as
well.

Linearization can be useful only if the Rossby number
Ro is small, which is defined as Ro � U=�d��, where U is
the typical dimensional velocity. If we expand v in a power
series in Ro, v � Rov1 � Ro2v2 � . . . , and similarly for
the variable p, the equation of motion becomes at the order
Ro�1:

 

@
@t
v1 � 2ẑ� v1 � �rp1 � Ekr2v1; r � v1 � 0:

(3)

Solutions to this equation are inertial modes. The equation
is linear with coefficients independent of time and space so
that solutions have the form

 v 1�r; t� � Refu1�r; ��e
i�!t�m’�g (4)

in spherical polar coordinates (r, �, ’). Ref. . .g denotes the
real part. The eigenmodes decouple according to their azi-
muthal wave numberm. The frequency of the eigenmode is
!. In the following, we only consider the case m � 2.

The equation at order Ro2 contains the inhomogeneous
term �r� v1� � v1, which potentially has a component
with m � 0 to drive a zonal flow in v2. Unless we specify
initial conditions, the solution to that equation is not unique
because an arbitrary solution of the homogeneous equation
can be added to any particular solution of the full equation.
In order to avoid the need to fix initial conditions, let us
modify the problem as follows: Imagine (1) augmented by
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a forcing term (which might represent tidal forcing) chosen
such that some particular eigenmode is maintained at
constant amplitude. Such a forcing term exists for every
mode. This effectively excites the solution (4) but with a
frequency ! that is purely real. Any axisymmetric flow
excited under these circumstances at order Ro2 is neces-
sarily time independent and governed by the equation

 2ẑ� �v2 � �r �p2 � Ekr2 �v2 � F; r � �v2 � 0; (5)

where the overbar denotes the average over ’ and

 F � ��r� v1�r; t � 0�	 � v1�r; t � 0�: (6)

The numerical computations below obtain inertial
modes in spherical shells from (3), calculate F according
to (6) and finally find the axisymmetric response with (5),
all subject to stress-free boundary conditions. The numeri-
cal method proceeds by decomposing v1 and �v2 into
poloidal and toroidal scalars, which guarantees that the
velocity field is divergence-free. The scalars are discretized
spectrally using Chebyshev polynomials in radius and
spherical harmonics in latitude. The eigenproblem (3) is
solved by inverse iteration. The matrix inversions appear-
ing in the inverse iteration and the solution of (5) are
performed with a direct method for block diagonal matri-
ces. In order to save computing resources, the matrices are
set up for flows symmetric with respect to the equator. The
spatial resolution used in the computations below reach up
to 257 Chebyshev polynomials and spherical harmonics of
degree 512. The method is nearly identical to the one used
in [6].

The amplitude of v1 is arbitrary and set such that its
kinetic energy is unity,

R
v2

1=2dV � 1, where the integral
extends over the spherical shell. The most interesting
quantity to be extracted from �v2 is the kinetic energy
contained in the differential rotation. This quantity has
the most direct link to astronomical observations. If a
simple rotation was detected in the zonal flow of a celestial
body, it would be interpreted as rotation of the planet or the
star as a whole and only differential rotation is a feature of
atmosphere dynamics. For the stress-free boundary con-
ditions used in this Letter, (5) allows arbitrary rotation
about the z axis to be added to any solution �v2. Among
all possible solutions, let us select the one that contains the
least rotation in the sense that

R
�v2

2dV 

R
j �v2 � � ẑ�

rj2dV for all � . The kinetic energy in the differential
rotation, Edr, is then directly given by

 Edr �
1

2

Z
�v2

2’dV: (7)

The energy of the meridional circulation, Emc, will also
appear below:

 Emc �
1

2

Z
� �v2

2r � �v2
2��dV: (8)

Because of the convention used throughout this Letter that

the linear modes v1 are normalized to unit energy, Edr and
Emc really represent the energies of the axisymmetric flow
divided by the energy of the linear response.

Figure 1 shows the zonal wind, �v2’, and the ’ compo-
nent of the inhomogeneous term, F’, driving that wind, for
one particular eigenmode. F’ is largest near the attractor
pattern present in the eigenmode v1, which means near
shear layers emanating from critical latitudes and their
subsequent reflections off boundaries. This pattern also
leaves its signature in the zonal flow �v2’, which otherwise
is in geostrophic equilibrium and is constant along the z
axis. By its definition (6), F’ is symmetric with respect to
the equator irrespective of the equatorial symmetry of v1.

Figure 2 showsEdr for the same mode as in Fig. 1 and for
different core sizes. Qualitatively identical pictures have
been obtained for the 10 other modes that have been
investigated in the course of this study. For the smallest
core sizes included in the figure, Edr is constant for Ekman
numbers from 10�4 down to nearly 10�7. An Edr indepen-
dent of Ek is the behavior expected for a full sphere. The
limits Ro! 0 and Ek! 0 can be carried out indepen-
dently and without difficulties in this case. Analytic ex-

FIG. 1. Contour plots of �v2’ (upper panel) and F’ (lower
panel) for the mode with m � 2 and ! � 0:88 at Ek � 10�6

in a shell with ri=ro � 0:2. Continuous (dashed) contour lines
indicate positive (negative) values. The rotation axis is pointing
upwards.
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pressions for inviscid eigenmodes are known for this ge-
ometry [7] because they are free of singularities. Their
nonlinear interaction is known not to produce significant
flows [8]. For ri=ro � 0:1, however, Edr increases for
decreasing Ek at small Ek, and this increase is already
observed at larger Ek for larger cores. The same increase is
expected for ri=ro � 0:01 and 0.03 at Ekman numbers not
reached in Fig. 2. Figure 2 suggests that Edr diverges for
Ek! 0.

The connection between F and internal shear layers,
already evident in Fig. 1, also manifests itself in a simple
scaling relation. Let us look at r� F instead of F in order
to eliminate the possibility thatF is a gradient field that can
be balanced by r �p2 in (5) and leaves �v2 � 0. Denote the
thickness of the internal layers by l1 and let v1 be a typical
velocity of the linear eigenmode within these layers. v1 is
much larger inside than outside a layer, so that

R
v2

1dV /
v2

1l1 [2]. Likewise, F varies rapidly across the shear zones
and slowly within the shear zones. The estimate for

R
jr�

Fj2dV thus is
 Z

jr� ��r� v1� � v1	j
2dV /

�
1

l1

v1

l1
v1

�
2
l1

/
1

l51

�Z
v2

1dV
�

2
: (9)

Keeping in mind that we use eigenvectors normalized to
unit kinetic energy, we find l1 / �

R
jr� Fj2dV	�1=5.

Motivated by this estimate, let us define a length l as

 l �
�Z
jr� Fj2dV

�
�1=5

: (10)

This length l is shown in Fig. 3.

Visualizations of shear layers in eigenmodes in spherical
shells have revealed that the thickness of most layers scales
in Ek1=4 [2]. However, analytical models of time dependent
free shear layers in rotating flows yield layer thicknesses in
Ek1=3 [1,5,9]. This leads to the assumption that we are, in
fact, dealing with nested layers [1,5]. The thinnest layer
should produce the largest contribution to the nonlinear
term so that we expect l / Ek1=3. This is indeed verified in
Fig. 3, which incidentally is the first demonstration of
layers scaling like Ek1=3 in spherical shell eigenmodes.

The previous figures show that the driving term F is
connected in a straightforward manner with the internal
shear layers. Irrespective of the exact scaling of their
thickness with Ek, it is clear that they must become thinner
with decreasing Ek so that singularities appear in the
eigenmode in the inviscid limit. Because

R
jr� Fj2dV �

l�5, it is concluded that r� F diverges for Ek! 0. This
implies a divergence of Edr and Emc.

Note that for decaying eigenmodes, the values of l and
r� F are exactly the same as above if the instantaneous
energy of the linear mode is normalized to one. As ex-
plained earlier, the only reason for studying stationary or
forced modes is that Edr and Emc acquire well defined
values, independent of additional parameters such as initial
conditions.

The next step is to relate the magnitudes of the zonal
flow and of F. The numerical data show that at small Ek,
Emc � Edr, which is expected because the meridional
circulation can never be in geostrophic equilibrium. For
an estimate of �v2’, we can therefore assume �v2� � �v2r �

0. Integrating the ’ component of (5) over z, one then finds
for an eigenmode with unit kinetic energy:

R
’̂r2 �v2dz /

Ek�1l�1. In order to estimate the integral, we need to know
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FIG. 3. The length l in a shell with ri=ro � 0:2 for modes with
m � 2 and ! � �0:23 (continuous line), �0:80 (long dashed
line), 0.88 (short dashed line), �1:09 (dot-dashed line), and 1.64
(dotted line). The thin line indicates the power law l / Ek1=3.
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FIG. 2. Edr for the mode with m � 2, ! � 0:88, and different
core sizes: ri=ro � 0:01 (continuous line), 0.03 (long dashed
line), 0.1 (dot-dashed line), and 0.2 (short dashed line).
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the typical length scale over which �v2’ varies. However,
the variation of �v2’ is not characterized by a single length
scale as Fig. 1 shows: For the mode shown there, strong
gradients appear in the same regions where F’ is large, but
also near the axis and near a cylindrical surface of radius
0:9ro. The investigation of these shear zones is beyond the
scope of this Letter. We obviously find an upper bound for
Edr if we assume that �v2’ varies only on an O�1� length
scale, which leads to Edr < const � Ek�2l�2. All investi-
gated modes verify this bound. If one insists on fitting
power laws to Edr, one finds a dependence close to Edr /

Ek�3=2 at the lowest numerically accessible Ek for most
modes (Fig. 4).

Let us now investigate with an order of magnitude
estimate whether tides can drive significant zonal flows
in planets. For this purpose, it will be assumed that the
velocity in the semidiurnal equilibrium tide is representa-
tive of the amplitude of tidally excited inertial modes even
though future work will have to decide whether this as-
sumption is justified for arbitrary singular inertial modes.
The typical (dimensional) velocity in a semidiurnal tide of
amplitude �0 is �0�=�, so that the assumed energy of
the inertial mode is

R
v2

1=2dV � ��0�=��2=��d�2Vs=2
where Vs is the volume of the shell. Using the relationship
Edr � �Ek=10�3��3=2�

R
v2

1=2dV�2 (see Fig. 4), one can
estimate the typical zonal velocity as �d�2Edr=Vs�1=2.
For the tides raised by Io on Jupiter and assuming Ek �
10�15, one finds in this way a zonal velocity of 15 m=s,
which is close to the observed value. These estimates, of
course, neglect higher orders in Ro, the detailed structure
of the planets, the compressibility of the fluid, and the
exact form of the tidal response. But they show that tides
plausibly generate significant zonal flows and that thermal
convection need not be the only mechanism one has to

invoke in order to explain, for example, the surface winds
of Jupiter.

In summary, it has been shown that inertial modes drive
zonal flows in spherical shells. Inertial modes decouple in
azimuthal wave number m in every axisymmetric con-
tainer. The question is, by which mechanism can a mode
excited at m � 0 drive an axisymmetric flow with m � 0?
Nonlinear interactions in no slip boundaries are one pos-
sibility, which has been demonstrated by Busse [10] for the
particular case of the ‘‘spin over mode’’ (the eigenmode
excited by precession). Inertial modes are marked by in-
ternal shear layers in all but the simplest geometries, such
as full spheres. If these shear layers become unstable, they
transport angular momentum in such a way that a mean
flow is maintained [11]. In unstable flows, triad resonances
[12] can also drive axisymmetric flows starting from modes
with m � 0. The mechanism described in this Letter is
more fundamental in the sense that it needs neither insta-
bility nor a special type of boundaries (F’ in Fig. 1 is not
confined to a boundary layer at a critical latitude). Instead,
it is shown that in a spherical shell, the inviscid limit is not
only peculiar because singularities appear in linear eigen-
modes but also because nonlinear interactions in shear
layers drive an axisymmetric flow whose amplitude (di-
vided by the amplitude of the linear mode) diverges in the
limit of the vanishing Ekman number. Because this mecha-
nism is related to shear zones in inertial modes, it is
expected to operate in all containers other than those for
which the inviscid inertial modes are smooth. An obvious
excitation mechanism for inertial modes in celestial bodies
is tidal forcing. The zonal circulation driven by tidal flows
through the mechanism described in this Letter may be
important for the dynamics of planets and stars.

Most of this work was done while the author was visiting
the Institut de Recherche sur les Phénomènes hors
Equilibre in Marseille, France.
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FIG. 4. Edr for the same shell and the same modes as in Fig. 3.
The thin continuous lines indicate the power law Edr / Ek�3=2.
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