Search for Chargino-Neutralino Production in $p\bar{p}$ Collisions at $\sqrt{s} = 1.96$ TeV

T. Aaltonen,²³ A. Abulencia,²⁴ J. Adelman,¹³ T. Affolder,¹⁰ T. Akimoto,⁵⁵ M. G. Albrow,¹⁷ S. Amerio,⁴³ D. Amidei,³⁵ A. Anastassov,⁵² K. Anikeev,¹⁷ A. Annovi,¹⁹ J. Antos,¹⁴ M. Aoki,⁵⁵ G. Apollinari,¹⁷ T. Arisawa,⁵⁷ A. Artikov,¹⁵ W. Ashmanskas,¹⁷ A. Attal,³ A. Aurisano,⁵³ F. Azfar,⁴² P. Azzi-Bacchetta,⁴³ P. Azzurri,⁴⁶ N. Bacchetta,⁴³ W. Badgett,¹⁷ A. Barbaro-Galtieri,²⁹ V.E. Barnes,⁴⁸ B.A. Barnett,²⁵ S. Baroiant,⁷ V. Bartsch,³¹ G. Bauer,³³ P.-H. Beauchemin,³⁴ F. Bedeschi,⁴⁶ S. Behari,²⁵ G. Bellettini,⁴⁶ J. Bellinger,⁵⁹ A. Belloni,³³ D. Benjamin,¹⁶ A. Beretvas,¹⁷ J. Beringer,²⁹ T. Berry,³⁰ A. Bhatti,⁵⁰ M. Binkley,¹⁷ D. Bisello,⁴³ I. Bizjak,³¹ R.E. Blair,² C. Blocker,⁶ B. Blumenfeld,²⁵ A. Bocci,¹⁶ A. Bodek,⁴⁹ V. Boisvert,⁴⁹ G. Bolla,⁴⁸ A. Bolshov,³³ D. Bortoletto,⁴⁸ J. Boudreau,⁴⁷ A. Boveia,¹⁰ B. Brau,¹⁰ L. Brigliadori,⁵ C. Bromberg,³⁶ E. Brubaker,¹³ J. Budagov,¹⁵ H. S. Budd,⁴⁹ S. Budd,²⁴ K. Burkett,¹⁷ G. Busetto,⁴³ P. Bussey,²¹ A. Buzatu,³⁴ K. L. Byrum,² S. Cabrera,^{16,q} M. Campanelli,²⁰ M. Campbell,³⁵ F. Canelli,¹⁷ A. Canepa,⁴⁵ S. Carillo,^{18,i} D. Carlsmith,⁵⁹ R. Carosi,⁴⁶ S. Carron,³⁴ B. Casal,¹¹ M. Casarsa,⁵⁴ A. Castro,⁵ P. Catastini,⁴⁶ D. Cauz,⁵⁴ M. Cavalli-Sforza,³ A. Cerri,²⁹ L. Cerrito,^{31,m} S. H. Chang,²⁸ Y. C. Chen,¹ M. Chertok,⁷ G. Chiarelli,⁴⁶ G. Chlachidze,¹⁷ F. Chlebana,¹⁷ I. Cho,²⁸ K. Cho,²⁸ D. Chokheli,¹⁵ J. P. Chou,²² G. Choudalakis,³³ S. H. Chuang,⁵² K. Chung,¹² W. H. Chung,⁵⁹ Y. S. Chung,⁴⁹ M. Cilijak,⁴⁶ C. I. Ciobanu,²⁴ M. A. Ciocci,⁴⁶ A. Clark,²⁰ D. Clark,⁶ M. Coca,¹⁶
G. Compostella,⁴³ M. E. Convery,⁵⁰ J. Conway,⁷ B. Cooper,³¹ K. Copic,³⁵ M. Cordelli,¹⁹ G. Cortiana,⁴³ F. Crescioli,⁴⁶
C. Cuenca Almenar,^{7,q} J. Cuevas,^{11,1} R. Culbertson,¹⁷ J. C. Cully,³⁵ S. DaRonco,⁴³ M. Datta,¹⁷ S. D'Auria,²¹ T. Davies,²¹ D. Dagenhart, ¹⁷ P. de Barbaro, ⁴⁹ S. De Cecco, ⁵¹ A. Deisher, ²⁹ G. De Lentdecker, ^{49,c} G. De Lorenzo, ³ M. Dell'Orso, ⁴⁶ F. Delli Paoli, ⁴³ L. Demortier, ⁵⁰ J. Deng, ¹⁶ M. Deninno, ⁵ D. De Pedis, ⁵¹ P. F. Derwent, ¹⁷ G. P. Di Giovanni, ⁴⁴ C. Dionisi, ⁵¹ B. Di Ruzza,⁵⁴ J. R. Dittmann,⁴ M. D'Onofrio,³ C. Dörr,²⁶ S. Donati,⁴⁶ P. Dong,⁸ J. Donini,⁴³ T. Dorigo,⁴³ S. Dube,⁵² J. Efron,³⁹ R. Erbacher,⁷ D. Errede,²⁴ S. Errede,²⁴ R. Eusebi,¹⁷ H. C. Fang,²⁹ S. Farrington,³⁰ I. Fedorko,⁴⁶ W. T. Fedorko,¹³ R. G. Feild,⁶⁰ M. Feindt,²⁶ J. P. Fernandez,³² R. Field,¹⁸ G. Flanagan,⁴⁸ R. Forrest,⁷ S. Forrester,⁷ M. Franklin,²² J. C. Freeman,²⁹ I. Furic,¹³ M. Gallinaro,⁵⁰ J. Galyardt,¹² J. E. Garcia,⁴⁶ F. Garberson,¹⁰ A. F. Garfinkel,⁴⁸ C. Gay,⁶⁰ H. Gerberich, ²⁴ D. Gerdes, ³⁵ S. Giagu, ⁵¹ P. Giannetti, ⁴⁶ K. Gibson, ⁴⁷ J. L. Gimmell, ⁴⁹ C. Ginsburg, ¹⁷ N. Giokaris, ^{15,a}
M. Giordani, ⁵⁴ P. Giromini, ¹⁹ M. Giunta, ⁴⁶ G. Giurgiu, ²⁵ V. Glagolev, ¹⁵ D. Glenzinski, ¹⁷ M. Gold, ³⁷ N. Goldschmidt, ¹⁸
J. Goldstein, ^{42,b} A. Golossanov, ¹⁷ G. Gomez, ¹¹ G. Gomez-Ceballos, ³³ M. Goncharov, ⁵³ O. González, ³² I. Gorelov, ³⁷
A. T. Goshaw, ¹⁶ K. Goulianos, ⁵⁰ A. Gresele, ⁴³ S. Grinstein, ²² C. Grosso-Pilcher, ¹³ R. C. Group, ¹⁷ U. Grundler, ²⁴ J. Guimaraes da Costa,²² Z. Gunay-Unalan,³⁶ C. Haber,²⁹ K. Hahn,³³ S. R. Hahn,¹⁷ E. Halkiadakis,⁵² A. Hamilton,²⁰ B.-Y. Han,⁴⁹ J. Y. Han,⁴⁹ R. Handler,⁵⁹ F. Happacher,¹⁹ K. Hara,⁵⁵ D. Hare,⁵² M. Hare,⁵⁶ S. Harper,⁴² R. F. Harr,⁵⁸ B.-Y. Han,⁴⁹ J. Y. Han,⁴⁹ R. Handler,⁵⁹ F. Happacher,¹⁹ K. Hara,⁵⁵ D. Hare,⁵² M. Hare,⁵⁶ S. Harper,⁴² R. F. Harr,⁷⁸ R. M. Harris,¹⁷ M. Hartz,⁴⁷ K. Hatakeyama,⁵⁰ J. Hauser,⁸ C. Hays,⁴² M. Heck,²⁶ A. Heijboer,⁴⁵ B. Heinemann,²⁹ J. Heinrich,⁴⁵ C. Henderson,³³ M. Herndon,⁵⁹ J. Heuser,²⁶ D. Hidas,¹⁶ C. S. Hill,^{10,b} D. Hirschbuehl,²⁶ A. Hocker,¹⁷ A. Holloway,²² S. Hou,¹ M. Houlden,³⁰ S.-C. Hsu,⁹ B. T. Huffman,⁴² R. E. Hughes,³⁹ U. Husemann,⁶⁰ J. Huston,³⁶ J. Incandela,¹⁰ G. Introzzi,⁴⁶ M. Iori,⁵¹ A. Ivanov,⁷ B. Iyutin,³³ E. James,¹⁷ D. Jang,⁵² B. Jayatilaka,¹⁶ D. Jeans,⁵¹ E. J. Jeon,²⁸ S. Jindariani,¹⁸ W. Johnson,⁷ M. Jones,⁴⁸ K. K. Joo,²⁸ S. Y. Jun,¹² J. E. Jung,²⁸ T. R. Junk,²⁴ T. Kamon,⁵³ P. E. Karchin,⁵⁸ Y. Kato,⁴¹ Y. Kemp,²⁶ R. Kephart,¹⁷ U. Kerzel,²⁶ V. Khotilovich,⁵³ B. Kilminster,³⁹ D. H. Kim,²⁸ H. S. Kim,²⁸ J. E. Kim,²⁸ M. J. Kim,¹⁷ S. B. Kim,²⁸ S. H. Kim,⁵⁵ Y. K. Kim,¹³ N. Kimura,⁵⁵ L. Kirsch,⁶ S. Klimenko,¹⁸ M. Klute,³³ B. Knuteson,³³ B. R. Ko,¹⁶ K. Kondo,⁵⁷ D. J. Kong,²⁸ J. Konigsberg,¹⁸ A. Korytov,¹⁸ A. V. Kotwal,¹⁶ A. C. Kraan,⁴⁵ J. Kraus,²⁴ M. Kreps,²⁶ J. Kroll,⁴⁵ N. Krumnack,⁴ M. Kruse,¹⁶ V. Krutelyov,¹⁰ T. Kubo,⁵⁵ S. E. Kuhlmann,² T. Kuhr,²⁶ N. P. Kulkarni,⁵⁸ Y. Kusakabe,⁵⁷ S. Kwang,¹³ A. T. Laasanen,⁴⁸ S. Lai,³⁴ S. Lami,⁴⁶ S. Lammel,¹⁷ M. Lancaster,³¹ R. L. Lander,⁷ K. Lannon,³⁹ A. Lath,⁵² G. Latino,⁴⁶ I. Lazzizzera,⁴³ T. LeCompte,² J. Lee,⁴⁹ J. Lee,²⁸ Y. J. Lee,²⁸ S. W. Lee,^{53.0} R. Lefèvre,²⁰ N. Leonardo,³³ S. Leone,⁴⁶ S. Levy,¹³ J. D. Lewis,¹⁷ C. Lin,⁶⁰ C. S. Lin,¹⁷ M. Lindgren,¹⁷ E. Lipeles,⁹ A. Lister,⁷ D. O. Litvintsev,¹⁷ T. Liu,¹⁷ N. S. Lockyer,⁴⁵ A. Loginov,⁶⁰ M. Loreti,⁴³ R.-S. Lu,¹ D. Lucchesi,⁴³ P. Lujan,²⁹ P. Lukens,¹⁷ G. Lungu,¹⁸ L. Lyons,⁴² J. Lys,²⁹ R. Lysak,¹⁴ E. Lytken,⁴⁸ P. Mack,²⁶ D. MacQueen,³⁴ R. Madrak,¹⁷ K. Maes G. Mahca, A. Mahousakis, F. Margaron, R. Marginean, C. Marino, C. P. Marino, A. Martin, M. Martin, V. Martin, ^{21,g} M. Martínez, ³R. Martínez-Ballarín, ³² T. Maruyama, ⁵⁵ P. Mastrandrea, ⁵¹ T. Masubuchi, ⁵⁵ H. Matsunaga, ⁵⁵ M. E. Mattson, ⁵⁸ R. Mazini, ³⁴ P. Mazzanti, ⁵ K. S. McFarland, ⁴⁹ P. McIntyre, ⁵³ R. McNulty, ^{30,f} A. Mehta, ³⁰ P. Mehtala, ²³ S. Menzemer, ^{11,h} A. Menzione, ⁴⁶ P. Merkel, ⁴⁸ C. Mesropian, ⁵⁰ A. Messina, ³⁶ T. Miao, ¹⁷ N. Miladinovic, ⁶ J. Miles, ³³ R. Miller, ³⁶ C. Mills, ¹⁰ M. Milnik, ²⁶ A. Mitra, ¹ G. Mitselmakher, ¹⁸ A. Miyamoto, ²⁷ S. Moed, ²⁰ N. Moggi, ⁵ B. Mohr, ⁸ C. S. Moor, ²⁸ R. Moore, ¹⁷ M. Morello, ⁴⁶ P. Movilla Fernandez, ²⁹ J. Mülmenstädt, ²⁹ A. Mukherjee, ¹⁷ Th. Muller, ²⁶

R. Mumford,²⁵ P. Murat,¹⁷ M. Mussini,⁵ J. Nachtman,¹⁷ A. Nagano,⁵⁵ J. Naganoma,⁵⁷ K. Nakamura,⁵⁵ I. Nakano,⁴⁰ A. Napier,⁵⁶ V. Necula,¹⁶ C. Neu,⁴⁵ M. S. Neubauer,⁹ J. Nielsen,^{29,n} L. Nodulman,² O. Norniella,³ E. Nurse,³¹ S. H. Oh,¹⁶ Y. D. Oh,²⁸ I. Oksuzian,¹⁸ T. Okusawa,⁴¹ R. Oldeman,³⁰ R. Orava,²³ K. Osterberg,²³ C. Pagliarone,⁴⁶ E. Palencia,¹¹ Y. D. Oh,²⁵ I. Oksuzian,¹⁶ T. Okusawa,⁴⁷ R. Oldeman,⁵⁶ R. Orava,²⁵ K. Osterberg,²⁵ C. Pagliarone,⁴⁶ E. Palencia,¹¹ V. Papadimitriou,¹⁷ A. Papaikonomou,²⁶ A. A. Paramonov,¹³ B. Parks,³⁹ S. Pashapour,³⁴ J. Patrick,¹⁷ G. Pauletta,⁵⁴ M. Paulini,¹² C. Paus,³³ D. E. Pellett,⁷ A. Penzo,⁵⁴ T. J. Phillips,¹⁶ G. Piacentino,⁴⁶ J. Piedra,⁴⁴ L. Pinera,¹⁸ K. Pitts,²⁴ C. Plager,⁸ L. Pondrom,⁵⁹ X. Portell,³ O. Poukhov,¹⁵ N. Pounder,⁴² F. Prakoshyn,¹⁵ A. Pronko,¹⁷ J. Proudfoot,²
F. Ptohos,^{19,e} G. Punzi,⁴⁶ J. Pursley,²⁵ J. Rademacker,^{42,b} A. Rahaman,⁴⁷ V. Ramakrishnan,⁵⁹ N. Ranjan,⁴⁸ I. Redondo,³² B. Reisert,¹⁷ V. Rekovic,³⁷ P. Renton,⁴² M. Rescigno,⁵¹ S. Richter,²⁶ F. Rimondi,⁵ L. Ristori,⁴⁶ A. Robson,²¹ T. Rodrigo,¹¹ E. Rogers,²⁴ S. Rolli,⁵⁶ R. Roser,¹⁷ M. Rossi,⁵⁴ R. Rossin,¹⁰ P. Roy,³⁴ A. Ruiz,¹¹ J. Russ,¹² V. Rusu,¹³ H. Saarikko,²³ A. Safonov,⁵³ W. K. Sakumoto,⁴⁹ G. Salamanna,⁵¹ O. Saltó,³ L. Santi,⁵⁴ S. Sarkar,⁵¹ L. Sartori,⁴⁶ K. Sato,¹⁷ P. Savard,³⁴ A. Sayawa Navara,⁴⁴ T. Sahajida,²⁶ P. Sahlahash,¹⁷ F. F. Sahajida,¹⁷ M. Rossin,¹⁶ P. Kolmitt,³⁸ T. Sahawara,⁷ A. Satonov, W. K. Sakumoto, G. Salananina, O. Sano, E. Santi, S. Sarkar, E. Sarton, K. Sato, F. Savard, A. Savoy-Navarro, ⁴⁴ T. Scheidle, ²⁶ P. Schlabach, ¹⁷ E. E. Schmidt, ¹⁷ M. P. Schmidt, ⁶⁰ M. Schmitt, ³⁸ T. Schwarz, ⁷ L. Scodellaro, ¹¹ A. L. Scott, ¹⁰ A. Scribano, ⁴⁶ F. Scuri, ⁴⁶ A. Sedov, ⁴⁸ S. Seidel, ³⁷ Y. Seiya, ⁴¹ A. Semenov, ¹⁵ L. Sexton-Kennedy, ¹⁷ A. Sfyrla, ²⁰ S. Z. Shalhout, ⁵⁸ M. D. Shapiro, ²⁹ T. Shears, ³⁰ P. F. Shepard, ⁴⁷ D. Sherman, ²² M. Shimojima, ^{55,k} M. Shochet, ¹³ Y. Shon, ⁵⁹ I. Shreyber, ²⁰ A. Sidoti, ⁴⁶ P. Sinervo, ³⁴ A. Sisakyan, ¹⁵ A. J. Slaughter, ¹⁷ J. Slaunwhite,³⁹ K. Sliwa,⁵⁶ J. R. Smith,⁷ F. D. Snider,¹⁷ R. Snihur,³⁴ M. Soderberg,³⁵ A. Soha,⁷ S. Somalwar,⁵² V. Sorin,³⁶ J. Spalding,¹⁷ F. Spinella,⁴⁶ T. Spreitzer,³⁴ P. Squillacioti,⁴⁶ M. Stanitzki,⁶⁰ A. Staveris-Polykalas,⁴⁶ R. St. Denis,²¹ J. Spatning, T. Sphenza, T. Sphenzer, T. Squinacioti, M. Stantzki, A. Stavens-Forykalas, K. St. Dens,
B. Stelzer, ⁸ O. Stelzer-Chilton, ⁴² D. Stentz, ³⁸ J. Strologas, ³⁷ D. Stuart, ¹⁰ J. S. Suh, ²⁸ A. Sukhanov, ¹⁸ H. Sun, ⁵⁶ I. Suslov, ¹⁵ T. Suzuki, ⁵⁵ A. Taffard, ^{24,p} R. Takashima, ⁴⁰ Y. Takeuchi, ⁵⁵ R. Tanaka, ⁴⁰ M. Tecchio, ³⁵ P. K. Teng, ¹ K. Terashi, ⁵⁰ J. Thom, ^{17,d} A. S. Thompson, ²¹ E. Thomson, ⁴⁵ P. Tipton, ⁶⁰ V. Tiwari, ¹² S. Tkaczyk, ¹⁷ D. Toback, ⁵³ S. Tokar, ¹⁴ K. Tollefson, ³⁶ T. Tomura, ⁵⁵ D. Tonelli, ⁴⁶ S. Torre, ¹⁹ D. Torretta, ¹⁷ S. Tourneur, ⁴⁴ W. Trischuk, ³⁴ S. Tsuno, ⁴⁰ Y. Tu, ⁴⁵ K. Tollerson, T. Tomura, D. Tonem, S. Torre, D. Torretta, S. Tourneur, W. Hischuk, S. Tsuno, T. Tu, N. Turini,⁴⁶ F. Ukegawa,⁵⁵ S. Uozumi,⁵⁵ S. Vallecorsa,²⁰ N. van Remortel,²³ A. Varganov,³⁵ E. Vataga,³⁷ F. Vazquez,^{18,i} G. Velev,¹⁷ C. Vellidis,^{46,a} G. Veramendi,²⁴ V. Veszpremi,⁴⁸ M. Vidal,³² R. Vidal,¹⁷ I. Vila,¹¹ R. Vilar,¹¹ T. Vine,³¹ M. Vogel,³⁷ I. Vollrath,³⁴ I. Volobouev,^{29,o} G. Volpi,⁴⁶ F. Würthwein,⁹ P. Wagner,⁵³ R. G. Wagner,² R. L. Wagner,¹⁷ J. Wagner,²⁶ W. Wagner,²⁶ R. Wallny,⁸ S. M. Wang,¹ A. Warburton,³⁴ D. Waters,³¹ M. Weinberger,⁵³ W. C. Wester III,¹⁷ B. Whitehouse,⁵⁶ D. Whiteson,^{45,p} A. B. Wicklund,² E. Wicklund,¹⁷ G. Williams,³⁴ H. H. Williams,⁴⁵ P. Wilson,¹⁷ B. L. Winer,³⁹ P. Wittich,^{17,d} S. Wolbers,¹⁷ C. Wolfe,¹³ T. Wright,³⁵ X. Wu,²⁰ S. M. Wynne,³⁰ A. Yagil,⁹ K. Yamamoto,⁴¹ J. Yamaoka,⁵² T. Yamashita,⁴⁰ C. Yang,⁶⁰ U. K. Yang,^{13,j} Y. C. Yang,²⁸ W. M. Yao,²⁹ G. P. Yeh,¹⁷ J. Yoh,¹⁷ K. Yorita,¹³ T. Yoshida,⁴¹ G. B. Yu,⁴⁹ I. Yu,²⁸ S. S. Yu,¹⁷ J. C. Yun,¹⁷ L. Zanello,⁵¹ A. Zanetti,⁵⁴ I. Zaw,²² X. Zhang,²⁴ J. Zhou,⁵² and S. Zucchelli⁵

(CDF Collaboration)

¹Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China

²Argonne National Laboratory, Argonne, Illinois 60439, USA

³Institut de Fisica d'Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain ⁴Bavlor University, Waco, Texas 76798, USA

⁵Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy

⁶Brandeis University, Waltham, Massachusetts 02254, USA

⁷University of California, Davis, Davis, California 95616, USA

⁸University of California, Los Angeles, Los Angeles, California 90024, USA

⁹University of California, San Diego, La Jolla, California 92093, USA

¹⁰University of California, Santa Barbara, Santa Barbara, California 93106, USA ¹¹Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain

¹²Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

¹³Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA

¹⁴Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia ¹⁵Joint Institute for Nuclear Research, RU-141980 Dubna, Russia

¹⁶Duke University, Durham, North Carolina 27708, USA

¹⁷Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

¹⁸University of Florida, Gainesville, Florida 32611, USA

¹⁹Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy

²⁰University of Geneva, CH-1211 Geneva 4, Switzerland

²¹Glasgow University, Glasgow G12 8QQ, United Kingdom

²²Harvard University, Cambridge, Massachusetts 02138, USA

week ending 9 NOVEMBER 2007 PHYSICAL REVIEW LETTERS ²³Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland ²⁴University of Illinois, Urbana, Illinois 61801, USA ²⁵The Johns Hopkins University, Baltimore, Maryland 21218, USA ²⁶Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany ²⁷High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305, Japan ²⁸Center for High Energy Physics: Kyungpook National University, Taegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; SungKyunKwan University, Suwon 440-746, Korea ²⁹Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ³⁰University of Liverpool, Liverpool L69 7ZE, United Kingdom ³¹University College London, London WC1E 6BT, United Kingdom ³²Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain ³Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA ³⁴Institute of Particle Physics: McGill University, Montréal, Canada H3A 2T8; and University of Toronto, Toronto, Canada M5S 1A7 ³⁵University of Michigan, Ann Arbor, Michigan 48109, USA ³⁶Michigan State University, East Lansing, Michigan 48824, USA ³⁷University of New Mexico, Albuquerque, New Mexico 87131, USA ³⁸Northwestern University, Evanston, Illinois 60208, USA ³⁹The Ohio State University, Columbus, Ohio 43210, USA ⁴⁰Okayama University, Okayama 700-8530, Japan ⁴¹Osaka City University, Osaka 588, Japan ⁴²University of Oxford, Oxford OX1 3RH, United Kingdom ⁴³Istituto Nazionale di Fisica Nucleare, University of Padova, Sezione di Padova-Trento, I-35131 Padova, Italy ⁴⁴LPNHE, Universite Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252 France ⁴⁵University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA ⁴⁶Istituto Nazionale di Fisica Nucleare Pisa, Universities of Pisa, Siena and Scuola Normale Superiore, I-56127 Pisa, Italy ⁴⁷University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA ⁴⁸Purdue University, West Lafayette, Indiana 47907, USA ⁴⁹University of Rochester, Rochester, New York 14627, USA ⁵⁰The Rockefeller University, New York, New York 10021, USA ⁵¹Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, University of Rome "La Sapienza," I-00185 Roma, Italy ⁵²Rutgers University, Piscataway, New Jersey 08855, USA ⁵³Texas A&M University, College Station, Texas 77843, USA ⁵⁴Istituto Nazionale di Fisica Nucleare, University of Trieste/Udine, Italy ⁵⁵University of Tsukuba, Tsukuba, Ibaraki 305, Japan ⁵⁶Tufts University, Medford, Massachusetts 02155, USA ⁵⁷Waseda University, Tokyo 169, Japan ⁵⁸Wayne State University, Detroit, Michigan 48201, USA ⁵⁹University of Wisconsin, Madison, Wisconsin 53706, USA ⁶⁰Yale University, New Haven, Connecticut 06520, USA (Received 17 July 2007; published 9 November 2007) We present a search for associated production of the chargino and neutralino supersymmetric particles using up to 1.1 fb⁻¹ of integrated luminosity collected by the CDF II experiment at the Tevatron $p\bar{p}$ collider at $\sqrt{s} = 1.96$ TeV. We analyze events with a large transverse momentum imbalance and either three charged leptons or two charged leptons of the same electric charge. The numbers of observed events

DOI: 10.1103/PhysRevLett.99.191806

in different theoretical models.

PACS numbers: 14.80.Ly, 12.60.Jv, 13.85.Rm

Supersymmetry (SUSY) [1] is one of the most appealing theories for physics beyond the standard model (SM). SUSY predicts the existence of a superpartner (sparticle) for each SM particle, sharing the same quantum numbers but differing by half a unit of spin. SUSY addresses several problems of the SM: it can solve the "hierarchy problem" [2], it can provide a good candidate for the cold dark matter in the Universe [3], and it makes possible a unification of the fundamental forces at high energies [4]. A natural solution to the hierarchy problem and the prospect of gauge coupling unification suggest that sparticle masses are near the electroweak scale and thus may be observable at the Tevatron.

We present a search for the associated production of the lightest chargino $\tilde{\chi}_1^{\pm}$ and the second-to-lightest neutralino $\tilde{\chi}_2^0$, the mass eigenstates of the superpartners of the elec-

are consistent with standard model expectations. Upper limits on the production cross section are derived

troweak gauge and Higgs boson. Chargino-neutralino production, $p\bar{p} \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 + X$, is one of the most interesting SUSY processes at the Tevatron in models in which the gauginos are light. It can be detected through the observation of isolated charged leptons [5] and a large imbalance in the transverse energy $(\not\!\!\!E_T)$ from the decays $\tilde{\chi}_1^{\pm} \rightarrow$ $\ell^{\pm}\nu\tilde{\chi}_{1}^{0}$ and $\tilde{\chi}_{2}^{0} \rightarrow \ell^{+}\ell^{-}\tilde{\chi}_{1}^{0}$, where $\ell = e, \mu, \tau$, and $\tilde{\chi}_{1}^{0}$ is the lightest SUSY particle, assumed to be stable and to escape detection. This signature has the experimental advantage that at hadron colliders leptons are relatively rare compared to the copiously produced jets, they are well identifiable, and the SM backgrounds are rather small, as they arise primarily from electroweak processes. We use three benchmark models based on the minimal supersymmetric standard model (MSSM) to interpret the data. The models differ mostly in the leptonic branching ratios of the $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^0$ and in the kinematic properties of the leptons. Previous searches at LEP excluded $\tilde{\chi}_1^{\pm}$ masses below

Previous searches at LEP excluded $\tilde{\chi}_1^{\pm}$ masses below 103.5 GeV/ c^2 [6] at the 95% confidence level (C.L.). This constraint is very robust and does not change much within minimal supergravity-inspired SUSY models. The D0 Collaboration recently constrained the $\tilde{\chi}_1^{\pm}$ mass to be larger than 117 GeV/ c^2 at 95% C.L. in a specific scenario [7].

This Letter summarizes and interprets the results from seven individual search channels with different lepton flavors and kinematic properties in the final state. The analyses use $p\bar{p}$ collision data taken by the CDF II detector at the Tevatron accelerator with a center-of-mass energy of $\sqrt{s} = 1.96$ TeV. The data, collected between March 2002 and February 2006, correspond to an integrated luminosity between 0.7 and 1.1 fb⁻¹, depending on the decay signature.

The CDF II detector [8] is cylindrically symmetric around the beam pipe in which the protons and antiprotons collide [5]. The transverse momentum of charged particles, p_T , is measured by a tracking system composed of an eight-layer silicon strip detector and a 96-layer drift chamber; both are located inside a solenoid providing a magnetic field of 1.4 T aligned along the beam axis. Electromagnetic and hadronic calorimeters surrounding the solenoid measure the energies of particles up to $|\eta| <$ 3.6. Wire chambers and scintillators are installed around the hadronic calorimeter to detect muons with $|\eta| < 1.4$. Gas Cherenkov counters [9] measure the average number of $p\bar{p}$ inelastic collisions per bunch crossing and thereby determine the beam luminosity.

We now outline the seven individual analyses that are then combined to achieve maximum sensitivity. The likesign (LS) analyses $(e^{\pm}e^{\pm}, e^{\pm}\mu^{\pm}, \mu^{\pm}\mu^{\pm})$ [10] require two leptons of the same electric charge and do not require the detection of a third lepton. In the trilepton analyses, the third lepton candidate can either be a fully reconstructed electron or muon $(e\ell\ell, \mu\ell\ell$ [11], $\mu\mu\ell$ [12], $\ell = e, \mu$) or a "track" from a charged particle (eet). The *eet* analysis gains acceptance in detector areas where the electron or muon detection is less efficient and adds sensitivity to hadronic decays of τ leptons. There is up to 30% overlap among the individual analyses which is accounted for in the combination, as explained later in this Letter.

The dominant SM background sources are diboson production with three or more prompt leptons (WZ, ZZ) and Drell-Yan (DY) events in which the third lepton results either from the conversion of a bremsstrahlung photon $(Z + \gamma, \text{ with } \gamma \rightarrow e^+e^-)$ or from a misidentified hadron. With Z we denote the production of a Z or a virtual photon γ^* . For the LS analyses $W\gamma$ production with a photon conversion is also a significant background. Smaller background contributions arise from $t\bar{t}$ and $b\bar{b}$ production with semileptonic b- and c-hadron decays. All these background sources are modeled using Monte Carlo (MC) event generators. Backgrounds from $t\bar{t}$, ZZ, and DY production are generated using PYTHIA [13]. The $W\gamma$ and WZbackgrounds are generated using for the hard-scattering process a program by Baur and Berger [14] and MADEVENT [15], respectively. In all cases PYTHIA is used for the parton showering and hadronization and the parton distribution functions are parametrized using CTEO5 [16]. All MC events are subsequently passed through the CDF II detector simulation based on the GEANT3 [17] framework, and reconstructed and analyzed in the same way as the data. The $b\bar{b}$ background was determined using a combination of MC and data estimates [12] and is negligible in most of the analyses. An additional background source is hadrons that are misidentified as leptons ("mis-id"). We determine the misidentification probability in jet data samples as a function of the lepton p_T or E_T using jets and tracks and apply it to the two leptons (one lepton) data sample for the trileptons (LS) analyses [10,11].

In the LS, $e\ell\ell$, and $\mu\ell\ell$ analyses, events are triggered on one well-identified central electron with $E_T > 18$ GeV or muon with $p_T > 18 \text{ GeV}/c$. In the *eet* $(\mu \mu \ell)$ analysis events are triggered on two central electrons (muons) with $E_T > 4$ GeV $(p_T > 4$ GeV/c). We select additional electrons in the central and the forward calorimeters. They are required to have a shower shape consistent with that expected for an electron and a track matched to the calorimeter cluster. Muons are required to deposit an amount of energy in the calorimeter consistent with the expectation for a minimum ionizing particle; additionally, trigger muons must have associated hits in the muon detectors. Dedicated algorithms reject photon conversions and cosmic rays [11]. We require all leptons to be isolated from other particles in the event. For the electrons and muons in the $\ell \ell \ell$, $\mu \ell \ell$, $e \ell t$, and $\mu \mu \ell$ analyses the isolation requirement is based only on the calorimeter energy deposits. For the track of the *eet* analysis it is based only on charged tracks, and for electrons and muons in the LS analyses it is based on both.

We exclude events in which two leptons form an invariant mass $m_{\ell\ell} < 15 \text{ GeV}/c^2$ or $76 < m_{\ell\ell} < 106 \text{ GeV}/c^2$ in

order to remove DY and diboson events. The lower mass threshold additionally removes $b\bar{b}$ background. For the $e\ell\ell$ (LS) analysis the lower mass value is raised to 20(25) GeV/ c^2 . For the LS analyses the mass interval near the Z resonance is changed to $66 < m_{\ell\ell} <$ 116 GeV/ c^2 . Backgrounds from DY production are further reduced by requiring $\not{E}_T > 15$ GeV (for the *eet* analysis $\not{E}_T > 20$ GeV). The $t\bar{t}$ background is reduced by vetoing events with large hadronic jet activity. Requirements on the angles between the leptons and \not{E}_T are placed in order to reduce the cosmic-ray background. A detailed description of the selection requirements is given elsewhere [10–12].

To illustrate the model sensitivity of the search we use three example SUSY models. The first is the scenario of minimal supergravity (mSUGRA) [18], a grand unified theory including gravity which has five independent parameters, fully determining all the masses and couplings of the SUSY particles. Since the present analysis is most sensitive to the common gaugino mass $m_{1/2}$, we fix the other four parameters: the common scalar mass is set to $m_0 = 60 \text{ GeV}/c^2$, the higgsino mixing parameter (μ) is taken to be positive, the trilinear coupling (A_0) is set to 0, and the ratio of the vacuum expectation values of the two Higgs fields $(\tan\beta)$ is set to 3. In mSUGRA the lightest slepton is a SUSY partner of the τ leading to a larger branching ratio (\mathcal{B}) into τ leptons: about 90% of the events contain at least one τ lepton. The second model we call "MSSM (W/Z model)": all the parameters are taken to be the same as in the above model, but the \mathcal{B} of $\tilde{\chi}_1^{\pm}(\tilde{\chi}_2^0)$ into leptons is fixed to be the same as the \mathcal{B} of the W(Z) gauge boson into leptons. In the third model, the "MSSM (no ℓ mixing)", the slepton chirality eigenstates are the mass eigenstates, resulting in nearly equal branching ratios of $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ to all three lepton flavors. In this model about 30% of the events contain no τ leptons. For all three scenarios the relationship between the masses of the gauginos is $m_{\tilde{\chi}_1^{\pm}} \approx$ $m_{\tilde{\chi}_{1}^{0}} \approx 2m_{\tilde{\chi}_{1}^{0}}$. The slepton mass value is approximately $0.31 \times m_{\tilde{\chi}_1^{\pm}} + 67 \text{ GeV}/c^2$. For the first and second models, the most stringent constraint on the $\tilde{\chi}_1^{\pm}$ mass to date is the LEP limit of 103.5 GeV/c^2 while for the third model the most stringent limit is 117 GeV/c^2 [7].

For the signal simulation we use SOFTSUSY [19] and ISAJET [20] to compute the sparticle mass spectrum; PYTHIA is used to generate the hard-scattering events, the parton radiation, and the hadronization. CTEO5 is used for the parton distribution functions. The CDF II detector's response to these events is then simulated. The signal acceptance for the process $p\bar{p} \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 + X \rightarrow$ $\ell \ell \ell \nu \tilde{\chi}_1^0 \tilde{\chi}_1^0 + X$, $(\ell = e, \mu, \tau)$, in the MSSM (no $\tilde{\ell}$ mixing) scenario varies from 2.7% at $m_{\tilde{\chi}_1^{\pm}} \approx 105 \text{ GeV}/c^2$, where only the LS analyses are sensitive, to 6.2% at $m_{\tilde{\chi}_1^{\pm}} \approx$ 160 GeV/ c^2 , where the acceptance of the trilepton analyses is maximal. The acceptance in the MSSM (W/Z)model) rises from 3.0% at low $m_{\tilde{\chi}_1^{\pm}}$ to 4.0% at $m_{\tilde{\chi}_1^{\pm}} \approx$ 150 GeV/ c^2 . The acceptance for mSUGRA is only 1.0%, independent of $m_{\tilde{\chi}_1^{\pm}}$, due to the enhanced decay of $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ into τ leptons.

There are systematic uncertainties on both the signal acceptance and the background prediction that have been evaluated by many comparisons of data and simulation [10-12]. The signal acceptance has an uncertainty due to the lepton selection (1.5%-13%) and trigger (<0.5%)efficiencies, the modeling of QCD radiation (2%-12%), the parton distribution functions (1%), the integrated luminosity (6%), and the jet energy measurement (1%-5%). The background is also affected by the lepton- and jetrelated uncertainties and the luminosity uncertainty. Additionally, we consider uncertainties on the lepton misidentification rate (50% for the trilepton and 10%-20% for the LS analyses), the conversion background (3%-16%), and the theoretical cross sections (7% for diboson, 10% for $t\bar{t}$, and 5% for DY production). Finally, the statistical uncertainties on the Monte Carlo samples are taken into account.

In Table I, the number of observed events is compared to the background contributions for each analysis. The number of data events is consistent with the background expectation in all analyses and no evidence of non-SM

TABLE I. The numbers of expected and observed events for each analysis before events which are shared by more than one analysis are assigned to a single analysis. For the *eet* analysis the background from misidentified jets is included in the $Z + \gamma$ background estimate of this analysis.

	$e^{\pm}e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^\pm\mu^\pm$	ell	$\mu\ell\ell$	eet	$\mu\mu\ell$
$\overline{Z+\gamma}$	0.49	0.62		0.18	0.30	0.54	0.06
$W\gamma$	1.54	1.63	_	_	_	_	_
$t\bar{t} + b\bar{b}$	0.01	0.03	0.01	0.04	0.03	0.22	0.06
WW, WZ, ZZ	0.32	0.82	0.53	0.39	0.66	0.21	0.09
Mis-id	0.60	0.90	0.38	0.14	0.27	—	0.20
Total	2.96	4.00	0.92	0.75	1.26	0.97	0.41
Uncertainty	± 0.48	± 0.57	±0.12	±0.36	±0.27	± 0.28	±0.11
Observed	4	8	1	0	1	3	1

FIG. 1 (color online). $\not\!\!\!L_T$ distribution for the *eet* analysis after all the selection criteria are applied except for $\not\!\!\!L_T > 20$ GeV. The observed data (points) are compared to the sum of the SM contributions (stacked, filled histograms). The open histogram shows the expected SUSY contribution for the mSUGRA scenario described in the text with $m_{\chi_1^{\pm}} = 113$ GeV/ c^2 and $\sigma \times \mathcal{B} = 0.16$ pb.

physics is observed. There is a slight excess of the data in the $e^{\pm}\mu^{\pm}$ and *eet* analyses. Figure 1 shows the $\not\!\!E_T$ distribution for the *eet* analysis. The observed data agree well with SM predictions at low values of $\not\!\!E_T$ where the background is dominant.

The data can be used to constrain the cross section times branching ratio, $\sigma \times \mathcal{B}$, and the allowed mass range of charginos for the SUSY scenarios discussed earlier. To remove the overlaps among the analyses, events which are selected by more than one analysis are assigned to the channel with the highest a priori signal-to-background ratio to obtain the best sensitivity. The frequentist-based "CL_s" method [21,22] is then used on the resulting nonoverlapping analyses. The correlations between the systematic uncertainties of the individual analyses have been evaluated for both the signal and the background and are accounted for in the limit calculation. A mass limit for the $\tilde{\chi}_1^{\pm}$ is derived from the cross section limit by comparing the observed limit to the next-to-leading order calculation for the cross section [23]. An uncertainty of 10% on the signal theoretical cross section is included in the limit calculation [24].

Figure 2 shows the 95% C.L. upper limit on the $\sigma \times \mathcal{B}$ as a function of the $\tilde{\chi}_1^{\pm}$ mass in the three theoretical scenarios mSUGRA, MSSM (W/Z model), and MSSM (no $\tilde{\ell}$ mixing). In each scenario the observed and the expected limits are compared with the theoretical $\sigma \times \mathcal{B}$ predictions. The expected limit is defined to be the median limit one would obtain in a sample of independent experiments in which no signal is present. It is used to estimate the *a priori* sensitivity of the search since it does not depend on the observed data. The observed limit is typically a factor of 2 larger than the expected, as the number of events observed is higher than the predicted background in the *eet* and $e^{\pm}\mu^{\pm}$ analyses. In the mSUGRA scenario

FIG. 2 (color online). $\sigma \times \mathcal{B}$ for $p\bar{p} \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 + X \rightarrow \ell \ell \ell + X$ as function of the $\tilde{\chi}_1^{\pm}$ mass. Shown are the observed and expected experimental upper limits and the theoretical cross section for the mSUGRA (a), the MSSM (W/Z model) (b), and the MSSM (no $\tilde{\ell}$ mixing) (c) scenario described in the text. Also shown are the 1σ and 2σ ranges for the expected limit.

[Fig. 2(a)] $\sigma \times \mathcal{B} > 1$ pb is excluded for all $m_{\tilde{\chi}_1^{\pm}}$. The limit improves with increasing mass down to 0.8 pb at $m_{\tilde{\chi}_1^{\pm}} = 150 \text{ GeV}/c^2$. In the MSSM W/Z model and no $\tilde{\ell}$ mixing scenarios [Fig. 2(b) and 2(c)] the limits on $\sigma \times \mathcal{B}$ range between 0.2 and 0.4 pb. In the MSSM (no $\tilde{\ell}$ mixing) scenario [Fig. 2(c)] we set a 95% C.L. lower limit on the $\tilde{\chi}_1^{\pm}$ mass of 129 GeV/ c^2 , which is the most stringent limit to date. In the mSUGRA and MSSM (no $\tilde{\ell}$ mixing) scenarios the expected $\tilde{\chi}_1^{\pm}$ mass limits are 122 GeV/ c^2 and 157 GeV/ c^2 , respectively.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. We thank T. Plehn and B. Allanach for their help on the theoretical interpretation. This work was supported by the US Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science, and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung. Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Particle Physics and Astronomy Research Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Comisión Interministerial de Ciencia y Tecnología, Spain; the European Community's Human Potential Programme under Contract No. HPRN-CT-2002-00292; and the Academy of Finland.

- ^aVisiting scientist from University of Athens, 15784 Athens, Greece.
- ^bVisiting scientist from University of Bristol, Bristol BS8 1TL, United Kingdom.
- ^cVisiting scientist from University Libre de Bruxelles, B-1050 Brussels, Belgium.
- ^dVisiting scientist from Cornell University, Ithaca, NY 14853, USA.
- ^eVisiting scientist from University of Cyprus, Nicosia CY-1678, Cyprus.
- ^fVisiting scientist from University College Dublin, Dublin 4, Ireland.
- ^gVisiting scientist from University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom.
- ^hVisiting scientist from University of Heidelberg, D-69120 Heidelberg, Germany.
- ¹Visiting scientist from Universidad Iberoamericana, Mexico D.F., Mexico.
- ^JVisiting scientist from University of Manchester, Manchester M13 9PL, United Kingdom.
- ^kVisiting scientist from Nagasaki Institute of Applied Science, Nagasaki, Japan.
- ¹Visiting scientist from University de Oviedo, E-33007 Oviedo, Spain.
- ^mVisiting scientist from University of London, Queen Mary College, London, E1 4NS, United Kingdom.
- ⁿVisiting scientist from University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
- ^oVisiting scientist from Texas Tech University, Lubbock, TX 79409, USA.
- ^pVisiting scientist from University of California, Irvine, Irvine, CA 92697, USA.

^qVisiting scientist from IFIC (CSIC-Universitat de Valencia), 46071 Valencia, Spain.

- [1] J. Wess and B. Zumino, Nucl. Phys. B70, 39 (1974).
- [2] E. Witten, Nucl. Phys. B188, 513 (1981); N. Sakai,
 Z. Phys. C 11, 153 (1981); S. Dimopoulos, Nucl. Phys. B193, 150 (1981).
- [3] J. Ellis, J. S. Hagelin, D. V. Nanopoulos, K. Olive, and M. Srednicki, Nucl. Phys. B238, 453 (1984); H. Goldberg, Phys. Rev. Lett. 50, 1419 (1983).
- [4] S. Dimopoulos, S. Raby, and F. Wilczek, Phys. Rev. D 24, 1681 (1981).
- [6] LEP SUSY Working Group Report No. LEPSUSYWG/ 01-03.1, 2001.
- [7] V. Abazov *et al.* (D0 Collaboration), Phys. Rev. Lett. 95, 151805 (2005).
- [8] D. Acosta *et al.* (CDF Collaboration), Phys. Rev. D **71**, 032001 (2005), and references therein.
- [9] D. Acosta *et al.*, Nucl. Instrum. Methods Phys. Res., Sect. A 461, 540 (2001).
- [10] A. Abulencia *et al.* (CDF Collaboration), Phys. Rev. Lett. 98, 221803 (2007).
- [11] A. Aaltonen et al., Phys. Rev. D. (to be published).
- [12] A. Aaltonen et al., Phys. Rev. D. (to be published).
- [13] T. Sjöstrand, L. Lonnblad, and S. Mrenna, LU-TP-01-21, arXiv:hep-ph/0108264 (we use version 6.3).
- [14] U. Baur and E. L. Berger, Phys. Rev. D 41, 1476 (1990).
- [15] F. Maltoni and T. Stelzer, J. High Energy Phys. 02 (2003) 027.
- [16] H.L. Lai et al., Eur. Phys. J. C 12, 375 (2000).
- [17] R. Brun and F. Carminati, CERN Program Library Long Writeup Report No. W5013, 1993.
- [18] H. P. Nilles, Phys. Rep. 110, 1 (1984).
- [19] B. C. Allanach, Comput. Phys. Commun. 143, 305 (2002); arXiv:hep-ph/0104145 (we use version 2.0.7).
- [20] F. Paige *et al.*, arXiv:hep-ph/0312045 (we use version 7.71).
- [21] T. Junk, Nucl. Instrum. Methods Phys. Res., Sect. A 434, 435 (1999).
- [22] A.L. Read, J. Phys. G 28, 2693 (2002).
- [23] W. Beenakker, R. Hopker, and M. Spira, arXiv:hep-ph/ 9611232.
- [24] T. Plehn and M. Spira (private communication).