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The purpose of this Letter is to remove the arbitrariness of the ad hoc choice of the algebra and its
representation in the noncommutative approach to the standard model, which was begging for a
conceptual explanation. We assume as before that space-time is the product of a four-dimensional
manifold by a finite noncommmutative space F. The spectral action is the pure gravitational action for
the product space. To remove the above arbitrariness, we classify the irreducible geometries F consistent
with imposing reality and chiral conditions on spinors, to avoid the fermion doubling problem, which
amounts to have total dimension 10 (in the K-theoretic sense). It gives, almost uniquely, the standard
model with all its details, predicting the number of fermions per generation to be 16, their representations
and the Higgs breaking mechanism, with very little input.
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In the phenomenological approach to determining the
Lagrangian of the fundamental interactions all the present
data are consistent with the standard model with neutrino
mixing. The input that goes into the construction of the
standard model is the following. First one needs the list of
three families of 16 quarks and leptons and their represen-
tations under the gauge group SU�3�c � SU�2�w �U�1�Y .
For the first family, this is taken to be
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for the leptons. The gauge symmetry is then broken to
SU�3�c �U�1�em by employing a complex scalar field
Higgs doublet H with representation (1, 2, 1). The
Lagrangian is constructed by writing the most general
renormalizable interactions consistent with the above sym-
metries. The freedom in the choice of the gauge group and
the fermionic representations have led to many attempts to
unify all the gauge interactions in one group and the
fermions in one irreducible representation. The most no-
table among the unification schemes are models based on
the SO�10� gauge group and groups containing it such as
E6, E7, and E8. The most attractive feature of SO�10� is
that all the fermions in one family fit into the 16 spinor
representation and the above delicate hypercharge assign-
ments result naturally after the breakdown of symmetry.
However, what is gained in the simplicity of the spinor
representation and the unification of the three gauge cou-
pling constants into one SO�10� gauge coupling is lost in
the complexity of the Higgs sector. To break the SO�10�
symmetry into SU�3�c �U�1�em one needs to employ
many Higgs fields in representations such as 10, 120, 126

[1]. The arbitrariness in the Higgs sector reduces the
predictivity of all these models and introduces many arbi-
trary parameters, in addition to the unobserved proton
decay.

The noncommutative geometric approach [2] to the
unification of all fundamental interactions, including grav-
ity, is based on the three ansatz [3,4]: (1) space-time is the
product of an ordinary Riemannian manifold M by a finite
noncommutative space F. (2) The K-theoretic dimension
(defined below) of F is 6 modulo 8. (3) The physical action
functional is given by the spectral action at unification
scale.

The empirical data taken as input are as follows.
(1) There are 16 chiral fermions in each of three gener-
ations. (2) The photon is massless. (3) There are Majorana
mass terms for the neutrinos.

Furthermore, one makes the following ‘‘ad hoc’’ choice:
the algebra of the finite space is taken to be C �H �
M3�C�, where H is the algebra of quaternions and M3�C�
is the algebra of complex 3� 3 matrices. One of the main
purposes of this Letter is to show how this algebra arises.

With this input the basic data of noncommutative ge-
ometry are constructed, consisting of an involutive algebra
A of operators in Hilbert space H , which plays the role of
the algebra of coordinates, and a self-adjoint operator D in
H [2] which plays the role of the inverse of the line
element. It was shown in [4] that the fermions lie in the
desired representations and that the spectral action associ-
ated with this noncommutative space unifies gravitation
with the standard model at the unification scale.

Although the emerging geometrical picture is very ap-
pealing and could be tested experimentally, the ad hoc
choice of the algebra forces us to address the question of
why singling this specific choice, and whether there are
other possibilities, as in the case of grand unification. In
addition, taking the number of fundamental fermions to be
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16 as input prompts the question of whether there could
exist additional fermions and whether there is a mathe-
matical restriction on this number from the representations
of the algebra. It is the purpose of this Letter to remove the
choice of the algebra as input and to derive it by classifying
the possible algebras compatible with the axioms of non-
commutative geometry and minimal number of assump-
tions to be specified. We shall keep as physical input that
there are three generations, the photon is massless, and that
some of the fermions must acquire a Majorana mass. We
shall prove that the number of fermions must be equal to
the square of an even integer, and thus we are able to derive
that there are 16 fermions per generation. We shall show
that the axioms of noncommutative geometry essentially
allow the choice of the algebra to be C �H �M3�C�. The
proof of these results is rather involved, and we shall only
state the theorems, with the rigorous mathematical details
given in [5].

The algebra A is a tensor product which geometrically
corresponds to a product space. The spectral geometry of
A is given by the product rule A � C1�M� �AF where
the algebra AF is finite dimensional, and

 H � L2�M;S� �H F; D � DM � 1� �5 �DF;

where L2�M;S� is the Hilbert space of L2 spinors, and DM
is the Dirac operator of the Levi-Civita spin connection on
M. The Hilbert space H F is taken to include the physical
fermions. The chirality operator is � � �5 � �F. The real
structure J � JM � JF is an antilinear isometry J: H !
H with the property that

 J2 � "; JD � "0DJ; J� � "00�J;

where ", "0, "00 2 f	1g3. There are 8 possible combina-
tions for ", "0, "00 and this defines a K-theoretic dimension
of the noncommutative space mod 8. These dimensions are
identical to the dimensions of Euclidean spaces allowing
the definitions for Majorana and Weyl spinors. In order to
avoid the fermion doubling problem it was shown in [6,7]
that the finite dimensional space must be taken to be of
K-theoretic dimension 6 where in this case �"; "0; "00� �
�1; 1;�1�. This makes the total K-theoretic dimension of
the noncommutative space to be 10 and would allow to
impose the reality (Majorana) condition and the Weyl
condition simultaneously in the Minkowskian continued
form, a situation very familiar in ten-dimensional super-
symmetry. In the Euclidean version, the use of the J in the
fermionic action would give for the chiral fermions in the
path integral, a Pfaffian instead of determinant, and will
thus cut the fermionic degrees of freedom by 2. In other
words, to have the fermionic sector free of the fermionic
doubling problem, we must make the choice

 J2
F � 1; JFDF � DFJF; JF�F � ��FJF:

In what follows, we will restrict our attention to determi-

nation of the finite algebra, and we will omit the subscript
F where F stands for finite.

There are two main constraints on the algebra from the
axioms of noncommutative geometry. We first look for
involutive algebras A of operators in H such that

 
a; b0� � 0; 8 a; b 2A;

where for any operator a in H , a0 � Ja�J�1. This is
called the order zero condition. We shall assume that the
following two conditions to hold. First, the action of A has
a separating vector. Second, the representation of A and J
in H is irreducible.

The strategy to determine the finite space F then in-
volves the following steps. First, to classify the irreducible
triplets (A, H , J). Second, to impose the Z=2 grading on
H . Third, to classify all the subalgebras AF A which
allows for an operator D that does not commute with the
center of A but fulfills the order one condition

 

D; a�; b0� � 0; 8 a; b 2AF:

Starting with the classification of the order zero condi-
tion with the irreducible pair (A, J) one finds out that the
solutions fall into two classes. Let AC be the complex
linear space generated by A in L�H �, the algebra of
operators in H . Then the two classes correspond to
(1) the center Z�AC� is C; (2) the center Z�AC� is C � C.

The case Z�AC� � C.—In this case we can state the
following theorem.

Theorem 1.—Let H be a Hilbert space of dimension n.
Then an irreducible solution with Z�AC� � C exists iff
n � k2 is a square. It is given by AC � Mk�C� acting by
left multiplication on itself and antilinear involution

 J�x� � x�; 8 x 2 Mk�C�:

This determines AC and its representations in (A, J)
and allows only for three possibilities for A. These are
A � Mk�C�, Mk�R�, and Ma�H� for even k � 2a, where
H is the field of quaternions. These correspond, respec-
tively, to the unitary, orthogonal, and symplectic case.

Z=2 grading.—In the setup of spectral triples one as-
sumes that in the even case the Hilbert space H is Z=2
graded, i.e., endowed with a grading operator � � ��,
�2 � 1 such that �A��1 �A. In the Z�AC� � C
case, one can then show that it is not possible to have the
finite space to be of K-theoretic dimension 6, with J� �
��J. We therefore can proceed directly to the second case.

The case Z�AC� � C � C.—In this case we can state
the theorem.

Theorem 2.—Let H be a Hilbert space of dimension n.
Then an irreducible solution with Z�AC� � C � C exists
iff n � 2k2 is twice a square. It is given by AC �
Mk�C� �Mk�C� acting by left multiplication on itself and
antilinear involution
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 J�x; y� � �y�; x��; 8 x; y 2 Mk�C�:

With each of the Mk�C� in AC we can have the three
possibilities Mk�C�, Mk�R�, or Ma�H�, where k � 2a. At
this point we make the hypothesis that we are in the
‘‘symplectic-unitary’’ case, thus restricting the algebra
A to the form A � Ma�H� �Mk�C�, k � 2a. The di-
mension of the Hilbert space n � 2k2 then corresponds to
k2 fundamental fermions, where k � 2a is an even number.
The first possible value for k is 2 corresponding to a Hilbert
space of four fermions and an algebra A � H �M2�C�.
The existence of quarks rules out this possibility. The next
possible value for k is 4 predicting the number of fermions
to be 16.

Z=2 grading.—In the above symplectic-unitary case,
one can write the Hilbert space H as the sum of the spaces
of C-linear maps from V to W and from W to V where V is
a four-dimensional vector space over C and W a two-
dimensional right vector space over H. There exists, up
to equivalence, a unique Z=2 grading of W and it induces
uniquely a Z=2 grading � of E. One then takes the grading
� of H so that the K-theoretic dimension of the finite
space is 6, which means that J� � ��J. It is given by

 ���; �� � ���;����:

This grading breaks the algebra A � M2�H� �M4�C�,
which is nontrivially graded only for the M2�H� compo-
nent, to its even part:

 A ev � H �H �M4�C�:

The subalgebra and the order one condition.—From the
previous analysis, it should be clear that the only relevant
case to be subjected to the order one condition is Z�AC� �
C � C and for A � M2�H� �M4�C�. The center of the
algebra Z�A� is nontrivial, and thus the corresponding
space is not connected. The Dirac operator must connect
the two pieces nontrivially, and therefore it must satisfy

 
D;Z�A�� � f0g:

The physical meaning of this constraint is to allow some of
the fermions to acquire Majorana masses, realizing the
seesaw mechanism, and thus connect the fermions to their
conjugates. The main constraint on such Dirac operators
arises from the order one condition. We have to look for
subalgebras AF Aev, the even part of the algebra A
for which 

D; a�; b0� � 0, 8 a; b 2AF. We can now
state the main result which recovers the input of [4].

Theorem 3.—Up to an automorphism of Aev, there
exists a unique involutive subalgebra AF Aev of maxi-
mal dimension admitting off-diagonal Dirac operators. It is
given by

 A F � f� � q; � �mj� 2 C; q 2 H; m 2 M3�C�g

 H �H �M4�C�

using a field morphism C! H. The involutive algebra
AF is isomorphic to C �H �M3�C� and together with
its representation in (H , J, �) gives the noncommutative
space taken as input in [4].

In simple terms, this means that the off-diagonal ele-
ments of the Dirac operator, connecting the 16 spinors to
their conjugates, break H �H �M4�C� ! C �H �
M3�C�. We have thus recovered the main input used in
deriving the standard model with the minimal empirical
data. These are the masslessness of the photon and the
existence of mixing terms for fermions and their conju-
gates. The main mathematical inputs are that the represen-
tations of (A, J) are irreducible, and there is an antilinear
isometry with nontrivial grading on one of the algebras.
Having made contact with the starting point of [4] we
summarize the results in that work.

Let M be a Riemannian spin 4-manifold and F the finite
noncommutative geometry of K-theoretic dimension 6 but
with multiplicity 3. Let M� F be endowed with the prod-
uct metric. The unimodular subgroup of the unitary group
acting by the adjoint representation Ad �u� in H is the
group of gauge transformations SU�2�w �U�1�Y �
SU�3�c. The unimodular inner fluctuations of the metric
give the gauge bosons of the standard model. The full
standard model (with neutrino mixing and seesaw mecha-
nism) coupled to gravity is given in Euclidean form by the
action functional [3,4]

 S � Tr
�
f
�
DA

�

��
�

1

2
hJ ~�;DA

~�i; ~� 2H cl;

where DA is the Dirac operator with inner fluctuations. To
explain the role of the spectral action principle, we note
that one of the virtues of the axioms of noncommutative
geometry is that it allows for a shift of point of view,
similar to Fourier transform in which the usual emphasis
on the points x 2 M of a geometric space is replaced with
the spectrum �  R of the operator D. The hypothesis,
which is stronger than diffeomorphism invariance, is that
‘‘the physical action only depends upon �’’.

We conclude that our approach predicts a unique fermi-
onic representation of dimension 16, with gauge couplings
unification. These properties are only shared with the
SO�10� grand unified theory. The main advantage of our
approach over the grand unification approach is that the
reduction to the standard model gauge group is not due to
plethora of Higgs fields, but is naturally obtained from the
order one condition, which is one of the axioms of non-
commutative geometry. There is also no proton decay
because there are no additional vector particles linking
the lepton and quark sectors. The spectral action is the
pure gravitational sector of the noncommutative space.
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This is similar in spirit to the Kaluza-Klein approach, but
with the advantage of having a finite spectrum and not the
infinite tower of states. Thus the noncommutative geomet-
ric approach manages to combine the advantages of both
grand unification and Kaluza-Klein without paying the
price of introducing many unwanted states. We still have
few delicate points which require further understanding.
The first is to understand the need for the restriction to the
symplectic-unitary case which is playing an important role
in the construction. The second is to determine the number
of generations. From the physics point, because of CP
violation, we know that we need to take N � 3, but there
is no corresponding convincing mathematical principle.

We would like to stress that the spectral action of the
standard model comes out almost uniquely, predicting the
number of fermions, their representations, and the Higgs
breaking mechanism, with very little input. The geometri-
cal model is valid at the unification scale and relates the
gauge coupling constants to each other and to the Higgs
coupling. When these relations are taken as boundary
conditions valid at the unification scale in the renormal-
ization group (RG) equations, one gets a prediction of the
Higgs boson mass to be around 170	 10 GeV, the error
being due to our ignorance of the physics at unification
scale. In addition, there is one relation between the sum of
the square of fermion masses and the W particle mass
square

 

X
generations

�m2
e �m2

� � 3m2
u � 3m2

d� � 8M2
W;

which enables us to predict the top quark mass compatible
with the measured experimental value.

We note that general studies of the Higgs sector in the
standard model [8] show that when the Higgs and top quark
masses are comparable, as in our case, then the Higgs mass
will be stable under the renormalization group equations,
up to the Planck scale.
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