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H. Mäkelä and K.-A. Suominen
Department of Physics, University of Turku, FI-20014 Turun yliopisto, Finland

(Received 18 June 2007; published 9 November 2007)

We present a simple but efficient geometrical method for determining the inert states of spin-S systems.
It can be used if the system is described by a spin vector of a spin-S particle and its energy is invariant in
spin rotations and phase changes. Our method is applicable to an arbitrary S and it is based on the
representation of a pure spin state of a spin-S particle in terms of 2S points on the surface of a sphere. We
use this method to find candidates for some of the ground states of spinor Bose-Einstein condensates.
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States which are stationary points of energy regardless
of the exact form of the energy functional are called inert
states [1]. A stationary point may change, say, from a local
maximum to a global minimum as the parameters charac-
terizing the energy vary, but for all parameter values the
inert state remains nevertheless a stationary point of en-
ergy. The independence of the details of the energy func-
tional is related to the fact that inert states are determined
by the symmetry group of the energy and the symmetry
properties of the order-parameter alone. Inert states have
been studied in the context of superfluid 3He, where the
analytical minimization of the energy functional is a very
complicated task, but the inert states can be calculated
straightforwardly [1,2]; see also [3]. It should be noted
that sometimes the form of the ground state may depend on
the parameters of the energy, in which case the ground state
cannot be an inert state. It is therefore possible that not all
stationary points of the energy are inert states, which is the
case in 3He [1,4]. For spin-S systems in general, however,
the calculation of inert states can also be tedious, as re-
cently demonstrated for integer spin-values S � 1–4 [5],
and the task seems to become increasingly complicated as
the value of S increases. In this Letter we present a simple
geometrical description that allows one to determine the
inert states of spin-S systems. The method is applicable
regardless of the value of spin and by using it we explicitly
construct numerous inert states. Almost all inert states for
S � 1, 2, 3 systems are ground states of the presently
realized spinor Bose-Einstein condensates [5–11], which
suggests that such states are also ground states of spinor
condensates when S is larger than 3.

Our way of calculating inert states is based on a geo-
metrical representation of spin states. It is well known that
a pure spin state of a spin-1=2 particle can be characterized
by a point on the surface of the Bloch sphere. Moreover, a
pure spin state � of a spin-S particle can be written in terms
of 2S pure spin states of spin-1=2 particles [12,13].
Combining these results, we see that � can be expressed
by 2S points on the surface of the Bloch sphere, which
provides the geometrical description we are interested in.
This decomposition was originally used to study the mo-

tion of a spin-S particle in a magnetic field [12,13].
Recently it has been used to calculate the symmetries of
the ground states of spinor condensates with S � 2 and
S � 3 [14,15]; see also Refs. [16,17]. This decomposition
is well suited for such purpose, since it shows explicitly
how spin vectors change in rotations. Rotating � corre-
sponds to rotating the point configuration describing this
vector with respect to the same axis and through the same
angle. Let � �

PS
M��S �MjS;Mi be a spin vector of a

spin-S particle. The points on the surface of the Bloch
sphere characterizing � can be obtained from the equation
[12,13]

 

XS
M��S

2S
S�M

� �
1=2
xS�M�M � A

Y2S
k�1

��kx� �k� � 0:

(1)

In the second expression we have chosen A 2 C in such a
way that we can define �k � cos��k=2�e�i’k=2 and �k �
sin��k=2�ei’k=2 for all k. Every pair (�k, �k) determines a
point on the Bloch sphere located at (�k, ’k). In the rest of
the Letter we call the polynomial of Eq. (1) the character-
istic polynomial of �. If we are given two sets of points,
then the characteristic polynomial of the configuration
consisting of both sets is obtained by multiplying the
characteristic polynomials of the two sets. Equation (1)
shows that the point distribution is the same for � and h�,
where h is an arbitrary nonzero complex number.

We now move on to calculating the inert states. We
assume that the system is described by a spin vector of a
spin-S particle, denoted by �, and that the energy func-
tional is invariant in rotations and phase transformations of
�. Thus the symmetry group of the energy is G � U�1� �
SO�3�, where SO�3� acts via its irreducible 2S� 1 dimen-
sional representation and the action of U�1� corresponds to
multiplication by a complex number of modulus one. We
define the isotropy group of � by H� � fg 2 Gjg� � �g;
i.e., it consists of those elements of U�1� � SO�3� which
leave � fixed. Two isotropy groups, say H� and H�0 , are
conjugate if H� � gH�0g

�1 � fghg�1jh 2 H�0 g for some
g 2 G. In Ref. [18] it has been shown that � is an inert state
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if, for every �0 infinitesimally close to �, H� and H�0 are
not conjugate. Here it is assumed that �0 cannot be obtained
from � by a rotation and a phase change and that jj�jj �
jj�0jj. In the present case each � determines some point
configuration on the surface of a sphere. A small variation
in the positions of the points leads to a small change in �.
Therefore, if all small changes necessarily lead to a new
isotropy group which is not conjugate to H�, then � is an
inert state. The elements of the isotropy group H� consists
of pairs �u; r�, where u 2 U�1� and r 2 SO�3�. The latter
are the elements of some subgroup K of SO�3�. K can be
determined by finding out all rotations which leave the
point configuration invariant. We call K the symmetry
group or symmetry of the point configuration. It should
not be mistaken for the isotropy group; see Ref. [17].

We find the inert states by determining point configura-
tions which cannot be modified without changing the
symmetry group K. However, even if K is invariant as
the positions of the points are varied, it is possible that
the elements u 2 U�1�, and therefore the isotropy group,
change. Let s be some symmetry axis of the point configu-
ration. Because of the rotational degree of freedom, we can
choose s � z. Then e�i�rotSz� � ei�� for some �rot.
Writing � �

PS
M��S �MjS;Mi we get e�i�rotM�M �

ei��M for all M. Assume that pn (ps) of the points char-
acterizing � are at the north (south) pole. Then Eq. (1)
shows that the highest order term in the characteristic
polynomial is x2S�ps and the lowest order term is xpn .
Therefore �S�ps , ��S�pn � 0 and we get

 

� � �S� pn��rot �mod 2��
� �ps � S��rot �mod 2��:

(2)

A similar result has been presented in Refs. [15,16]. If
�u; r� 2 H� and the rotation angle of r is �rot, then u �
e�i�. We see that if the elements of the SO�3� part of H�

remain unchanged as the points move, the U�1� parts can
change only if the number of points on a symmetry axis
changes. If the smallest nonzero rotation angle leaving the
points fixed is �rot � 2�=n, then the only way to move
points from the symmetry axis without affecting the sym-
metry group is to remove symmetrically kn points from the
axis. Here k � 1; 2; . . . . Equation (2) shows that in this
case the U�1� parts of H� remain unchanged, so it is
possible to change the phase terms only if also the sym-
metry group changes. When calculating inert states we can
thus concentrate only on the changes in the symmetry
group.

The possible symmetry groups are the continuous
groups O�2�, SO�2�, and the finite groups I, Cn, Dn, T,
O, and Y. I is the trivial group consisting of the identity
element alone, Cn (Dn) is the cyclic (dihedral) group of
order n, T is the symmetry group of the tetrahedron, O that
of the octahedron or the cube, and Y that of the icosahedron
and the dodecahedron. We now calculate which of these
subgroups determine inert states. We first find point con-
figurations that have some given group as their symmetry

group, and then see which of these cannot be modified
without changing the symmetry group. In this context
Ref. [19] is very useful. In the following we choose the z
axis to be one of the symmetry axes.

Orthogonal group O�2�.—The point configuration has
to be invariant in arbitrary rotations about the z-axis and in
a rotation through � about an axis in the xy plane.
Therefore there has to be an equal number of points at
the north and south poles and no points elsewhere. Clearly
any change in the relative positions of the points will
change the symmetry group, so this state is an inert state.
Now ��k; ’k� � �0; 0� for k � 1; . . . ; S, ��k; ’k� � ��; 0�
for k � S� 1; . . . ; 2S, and the spin vector obtained from
Eq. (1) is �SO�2� � jS; 0i. This vector is clearly possible only
if S is an integer. Here and in the rest of the Letter the
subscript of � gives the symmetry group of the point
distribution and the superscript gives the value of the spin.

Special orthogonal group SO�2�.—This symmetry is
present if there is only one symmetry axis and the point
configuration is invariant in arbitrary rotations about this
axis. Thus all the points have to be at the poles. The number
of points at different poles cannot be equal, because then
the configuration would be invariant under O�2�. Also now
the symmetry group changes if the relative positions of the
points are changed, so this is an inert state. If there are S�
M points at the north pole, then ��k; ’k� � �0; 0� for k �
1; . . . ; S�M and ��k; ’k� � ��; 0� for k � S�M�
1; . . . ; 2S. These give �SSO�2� � jS;Mi, where M> 0. It is
sufficient to consider positive M only, since jS;Mi and
jS;�Mi can be obtained from each other by a rotation.
Now inert states can exist also when S is a half integer.

Cyclic groupCn.—The only symmetry axis is the z axis,
and the system is invariant in rotations through 2�k=n
about this axis. There has to be a point at ��; ’� �
��C; ’C � 2�k=n� for some fixed �C 2 �0; ��, ’C 2
�0; 2�=n�, and for each k � 1; . . . ; n. There may be points
also elsewhere, as long as the configuration is invariant
under Cn. The value of �C can always be changed by some
��C without altering the symmetry group. This change
cannot be achieved by a rotation. Therefore the cyclic
groups do not determine any inert states. In Fig. 1(a) we
show an example of the C5 symmetry in an S � 5=2
system.

Dihedral group Dn.—Because Cn is a subgroup of Dn,
there has to be a point at ��;’� � ��D; ’D � 2�k=n�. Now
there are n symmetry axes in the xy plane, so there is an
equal number of points at the north and the south pole. If

(a) (b)

FIG. 1. Some noninert states. In (a) � and in (b) the height of
the box can be changed without affecting the symmetry. In
(c) we show the truncation of an octahedron.
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there are points outside the xy plane and the poles, it is
possible to change the �-coordinate of these points without
changing the symmetry group, so these configurations do
not give inert states. In Fig. 1(b) this is illustrated for a
configuration with D4 symmetry. The case where there are
points only in the xy plane and at the poles can be divided
into three cases. Below k � 1; 2; . . . ; n, l � 1; 2; . . . , and
’l 2 �0; 2�=n� (i.) n or more points at each pole and ln
points in the xy-plane. Now n points can be moved from
each pole towards the equatorial plane without changing
the symmetry, see Fig. 1(a). (ii.) Less than n points at each
pole, two or more points at ��;’� � ��=2; ’1 � 2�k=n�,
and ln points elsewhere in the xy plane. It is possible to
move one point up and one down by the same amount at
each (�=2, ’1 � 2�k=n) without changing the symmetry
group. (iii.) Less than n points at each pole and one point at
each ��;’� � ��=2; ’l � 2�k=n�, ’l � ’l0 if l � l0.
When the symmetry axes in the xy plane are taken into
attention, it turns out that l � 1 is the only possibility [20].

We therefore conclude that an inert state with Dn sym-
metry is possible only if there is one point at ��;’� �
��=2; 2�k=n� for k � 1; 2; . . . ; n and p < n points at each
pole (we have chosen ’1 � 0). It follows that in a spin-S
system there is an inert state corresponding to Dn only if
�2S� 2�=3 � n � 2S. Furthermore, the condition n �
2S� 2l, where l is a non-negative integer, has to hold.
This is because, for fixed S, n can be decreased only by
putting an equal number of points at each pole. Therefore
for integer (half integer) spin only even (odd) values of n
are possible, the smallest value of n being given by the
smallest even (odd) integer bounding �2S� 2�=3 above. It
is to be noted that if S � 3, n � 4, the symmetry of the
point configuration is not D4, but that of an octahedron. If
S � 2, n � 2, or n � 4, the symmetry is D4. The n � 4
case corresponds to a square in the horizontal plane, while
n � 2 gives a square in a vertical plane. We define
�SD2S�2l

�jS;S� li�jS;�S� li. Using Eq. (1) it is easy to
verify that this is a vector with D2S�2l symmetry. Dihedral
inert states exist if S > 1 for both integer and half integer S.

The remaining possible symmetry groups are tetrahe-
dral, octahedral, and icosahedral groups. We calculate only
those inert states which are obtained by placing points at
the vertices of the convex regular polyhedra. The latter are
often called the Platonic solids, and they are the tetrahe-
dron, octahedron, cube, icosahedron, and dodecahedron.
Any change in the relative positions of the vertices changes
the symmetry group (assuming that rotations are ex-
cluded). It is possible that there are also other ways to
distribute points on the surface of a sphere with, say,
octahedral symmetry than to place them at the vertices of
the octahedron or cube. However, these distributions cor-
respond to polyhedra which are not regular, and therefore
the points can probably be moved without changing the
symmetry group. Platonic solids have an even number of
vertices, which means that inert states with half integer S
are not possible.

Octahedral group O.—Octahedron and cube can be
inscribed in a sphere simultaneously so that the combined
point configuration has octahedral symmetry; see Fig. 2(a).
This is obtained by putting the vertices of the cube at
��; ’� � ��Cube; �k=2�, ��� �Cube; �k=2�, and those of
the octahedron at ��; ’� � �0; 0�; ��; 0�; ��=2; ��1�
2k�=4�. Here k � 1, 2, 3, 4 and �Cube � tan�1�

���
2
p
�. The

corresponding characteristic polynomials are x8 � 14x4 �
1 and x5 � x for the cube and octahedron, respectively. The
vectors obtained from these polynomials are �4

Cube ����
5
p
j4; 4i �

������
14
p
j4; 0i �

���
5
p
j4;�4i and �3

Octa � j3; 2i �
j3;�2i. If there are m (n) points at each vertex of a cube
(octahedron), the characteristic polynomial becomes �x8 �
14x4 � 1�m�x5 � x�n. Corresponding spin vectors can be
calculated by comparing this polynomial with the first
expression in Eq. (1). For example, if m � n � 1, the
characteristic polynomial becomes x13 � 13x9 � 13x5 �

x, which gives �7
Cube�Octa �

������
11
p
j7; 6i �

������
13
p
j7; 2i �������

13
p
j7;�2i �

������
11
p
j7;�6i. It is important to notice that if

there are four or more points at each vertex of the octahe-
dron, it is possible to truncate it continuously; see Fig. 1(c).
Truncation does not change the symmetry or isotropy
group but it changes the state, so the octahedron deter-
mines an inert state only if there are less than four points at
each vertex. Similarly, the cube can be truncated if there
are three or more points at each vertex. Combining these
results, we see that inert states determined by the cube and
octahedron are possible if S � 3m� 4n, where m� n 	
1, m � 3, and n � 2.

Tetrahedral group T.—Tetrahedron has four vertices,
which we choose to be at ��;’�� ��Tetra;�=4�;
��Tetra;5�=4�;����Tetra;3�=4�;����Tetra;7�=4�, where
�Tetra � tan�1�

���
2
p
�. The characteristic polynomial is x4 �

2i
���
3
p
x2 � 1, which gives �2

T � j2; 2i � i
���
2
p
j2; 0i �

j2;�2i. The tetrahedron, octahedron, and cube can be
inscribed in a sphere simultaneously; see Figs. 2(a) and
2(b). The vertices can be chosen to be at the points given
above. The resulting configuration has tetrahedral symme-
try, which therefore can be present at least if S � 2l�
3m� 4n. Here l 	 1 and m, n 	 0. Because of the re-
strictions imposed by truncation, the conditions l� n � 2
and m � 3 have to hold.

Icosahedral group Y.—Icosahedron can be truncated if
there are five or more points at each vertex, while for

(a) (d)(b)

FIG. 2. Examples of inert states. In (a) cube and octahedron
and in (b) cube and tetrahedron inscribed in a sphere simulta-
neously. In (a) the symmetry is that of an octahedron or cube and
in (b) that of tetrahedron. In (c) icosahedron and in
(d) dodecahedron.
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dodecahedron this is possible if there are more than
two points at each vertex; see Figs. 2(c) and 2(d). Thus,
these symmetries are possible if S � 6m� 10n, where
m� n 	 1,m � 4, and n�2. We obtain �6

Ico�
���
7
p
j6;5i�������

11
p
j6;0i�

���
7
p
j6;�5i and �10

Dode �
������
17
p
j10; 10i �������

57
p
j10; 5i �

������
247
11

q
j10; 0i �

������
57
p
j10;�5i �

������
17
p
j10;�10i;

details of the calculation will be presented in Ref. [20].
In Table I we list the inert states for integer-valued spin

S � 1–4. All except �D4
� j4; 2i � j4;�2i have also been

obtained using a different method [5]. This state was
omitted in Ref. [5] because it was assumed that the isotropy
group of �D4

is a subgroup of the isotropy group of �D8

[21]. But we find that this is not the case, as can be seen by
considering a rotation through �=2 about the z axis. In this
case Eq. (2) shows that for D4 symmetry � � �, while for
D8 symmetry � � 0.

It is interesting to compare the inert states of Table I with
the ground states of spinor Bose-Einstein condensates with
S � 1, 2, 3. For S � 1 there are no other ground states than
the inert states [6,7]. If S � 2 it seemed initially that also
noninert ground states are possible due to an accidental
degeneracy [8,22], but recently it has been shown that due
to quantum and thermal fluctuations this degeneracy is
lifted, after which only inert ground states can occur
[23,24]. However, there is one inert state, namely j2; 1i,
which is never a ground state. If S � 3, the inert states are
ground states but also numerous other ground states are
possible [9–11]. These results suggest that the inert states
for S > 3 are ground states of spinor condensates at least
for some values of the scattering lengths. This has interest-
ing consequences considering topological defects, as it
shows that monopoles made possible by the jS; 0i ground
state and non-Abelian vortices arising from the
Dn-symmetric states are possible in spinor condensates

regardless of the value of spin. In this Letter we have not
considered the time-reversal symmetry. Its effects will be
discussed elsewhere [20]. To conclude, we have presented
a simple geometrical method to calculate the inert states of
systems which are described by a single particle wave
function of a spin-S particle and which have U�1� �
SO�3� invariant energy functional. The possible inert
states can be identified and classified by their symmetry
groups.
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[11] H. Mäkelä and K.-A. Suominen, Phys. Rev. A 75, 033610

(2007).
[12] E. Majorana, Nuovo Cimento 9, 43 (1932).
[13] F. Bloch and I. I. Rabi, Rev. Mod. Phys. 17, 237 (1945).
[14] R. Barnett, A. Turner, and E. Demler, Phys. Rev. Lett. 97,

180412 (2006).
[15] R. Barnett, A. Turner, and E. Demler, Phys. Rev. A 76,

013605 (2007).
[16] R. Barnett, A. Turner, and E. Demler, arXiv:cond-mat/

0612099.
[17] S.-K. Yip, arXiv:cond-mat/0611426.
[18] L. Michel, C. R. Acad. Sci., Ser. A 272, 433 (1971); Rev.

Mod. Phys. 52, 617 (1980).
[19] H. Bacry, J. Math. Phys. (N.Y.) 15, 1686 (1974).
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TABLE I. The inert states for S � 1–4. The only symmetry
group that is not manifested here is the icosahedral group.

Spin Inert states

S � 1 �SO�2� � j1; 1i, �O�2� � j1; 0i
S � 2 �SO�2� � j2; 2i and j2; 1i, �D4

� j2; 2i � j2;�2i,
�O�2� � j2; 0i, and �Tetra � j2; 2i � i

���
2
p
j2; 0i � j2;�2i

S � 3 �SO�2� � j3; 3i; j3; 2i, and j3; 1i, �O�2� � j3; 0i,
�D6
� j3; 3i � j3;�3i, and �Octa � j3; 2i � j3;�2i

S � 4 �SO�2� � j4; 4i; j4; 3i; j4; 2i, and j4; 1i, �O�2� � j4; 0i,
�D8
� j4; 4i � j4;�4i, �D6

� j4; 3i � j4;�3i
�D4
� j4; 2i � j4;�2i, �Tetra �

���
7
p
j4; 4i � 2i

���
3
p
j4; 2i

�
������
10
p
j4; 0i � 2i

���
3
p
j4;�2i �

���
7
p
j4;�4i.

�Cube �
���
5
p
j4; 4i �

������
14
p
j4; 0i �

���
5
p
j4;�4i
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