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Using arguments based on sum rules, we derive a general result for the average shifts of rf lines in Fermi
gases in terms of interatomic interaction strengths and two-particle correlation functions. We show that
near an interaction resonance shifts vary inversely with the atomic scattering length, rather than linearly as
in dilute gases, thus accounting for the experimental observation that clock shifts remain finite at Feshbach
resonances.
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Interatomic interactions limit the accuracy of atomic
clocks, causing density-dependent clock shifts in radio
frequency (rf) transitions. Similarly, such shifts play an
important role in probing correlations in atomic gases [1],
where, e.g., rf spectroscopy has been used to detect the
presence of molecules and provide evidence for pairing
gaps [2–4]. Surprisingly, experimentally observed clock
shifts become small when interactions are resonantly en-
hanced [3,5], a result we explain here, first by developing a
general theory of the average clock shift and then by
showing that in the strongly interacting regime the shifts
depend inversely on interatomic scattering lengths.

Single component spin-polarized Fermi gases do not
experience clock shifts, since the rf coupling preserves
polarization, forbidding s-wave interactions [5]. In addi-
tion, in mixtures of interacting fermions in two states j1i
and j2i, e.g., the lowest two hyperfine states of 6Li, clock
shifts are absent for transitions j1i ! j2i, since the inter-
action energy is invariant under the rf field [1]. Interactions
in two-state mixtures can be probed, rather, by driving
transitions to an initially empty state, e.g., in 6Li, from
j2i to the next hyperfine state j3i.

Rf transitions in atoms are usually described in terms
of coherent evolution of a two-level system undergoing
Rabi oscillations, represented by rotations of an equivalent
pseudospin on the Bloch sphere. In the present problem,
the rf field rotates an atom in state j2i into a coherent
superposition, j2i ! j�i � cos�j2i � e�i� sin�j3i. (The
angles � and � depend on time, the rf pulse power, and
its detuning from resonance.) To the extent that interatomic
interactions only shift the energy levels, but do not broaden
the lines, the Bloch sphere picture is valid. However, strong
interactions lead to an incoherent and irreversible evolu-
tion, and in the long-time, weak pulse regime the proba-
bility to find the system in a particular final state is given
rather by Fermi’s golden rule.

We base our discussion on linear response theory (in
Ref. [5] fewer than 30% of the atoms are transferred by the
rf pulse, with comparable numbers in Ref. [3]). We con-
sider a spatially uniform Fermi gas with three internal
states, and Hamiltonian H � H0 �Hs, where H0 �P3
i�1 �iNi, �i is the hyperfine plus Zeeman energy of level
jii, and Ni is the total number of atoms in state jii. The
system Hamiltonian is (@ � 1 throughout),

 Hs �
X
i

Z
d3r

�
1

2m
r yi �r� � r i�r�
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�
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i<j
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0� j�r0� i�r�:

(1)

Here vij�r� r0� is the bare potential between two atoms in
jii and jji (not a low-energy effective interaction).

The (essentially spatially uniform) rf field primarily
couples the states j2i and j3i; other internal transitions
are far off-resonance. We therefore describe the rf coupling
by Hrf � B�t�Y with the pseudospin-flip operator

 Y � i
Z
d3r� y3 �r� 2�r� �  

y
2 �r� 3�r��; (2)

and B�t� � 2!R cos!t, with !R the Rabi frequency.
We assume an initial many-body state j12i of energy

E12, containing atoms in states j1i and j2i. The transition
rate of atoms from state j2i to j3i, I�!�, is

 I�!� � 2�!2
R

X
f

jhfjYj12ij2��!� E12 � Ef�

	 2!2
R�
00�!�; (3)

where the sum runs over all eigenstates jfi. The mean
frequency for the transition is given by
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where !0 � �3 � �2, and �c is the average clock shift.
Using Eq. (3) we derive the f-sum rule for the first moment
of the spectrum,
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For state j3i initially unoccupied,
 Z 1
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�N2; (6)

where N2 is the number of atoms in state j2i. We thus
derive the simple result for the mean clock shift

 �c �
1

2N2
h12j��Y;Hs�; Y�j12i: (7)

More generally, the expectation value becomes an en-
semble average.

The average shift is simply the change in energy per 2-
atom required to rotate all 2-atoms in state j12i infinitesi-
mally into state j�i. This rotation transforms j12i into a
state j1�i � ei�Yj12i of j1i and � atoms, with the same
spatial many-particle wave function as j12i. The energy
difference of the two states is thus �E � h1�jHj1�i �
h12jHj12i ! 1

2�
2h12j��Y;H�; Y�j12i to second order in �.

Since the number of atoms �N transferred from j2i to j3i is
N2�

2, the change in system energy per atom is given by
Eq. (7), a result valid both for superfluid and normal
phases. The general expression for the clock shift in terms
of the interactions is

 �c �
1

n2

Z
d3r�v13�r� � v12�r��h 

y
1 �r� 

y
2 �0� 2�0� 1�r�i;

(8)

where n2 � N2=V, V is the system volume, and h. . .i
denotes an ensemble average.

To calculate the clock shift explicitly, we assume for
simplicity in the following that the interatomic potentials
are short-range contact interactions, each with a large
momentum cutoff. The bare couplings �gij are related to
the measured low-energy couplings gij � 4�aij=m, with
aij the physical scattering lengths, by g�1

ij � �g�1
ij �R

�
0 d

3p=�2��3�m=p2� � �g�1
ij �m�ij=2�2, as one sees

by solving the usual t-matrix equation. Thus �gij �
4�=�m�a�1

ij � r
�1
0;ij��, where r0;ij � �=2�ij. Physically

we expect r0;ij to be of order the characteristic length
�C6m=me�

1=4a0 for the interatomic potential, where C6 is
the strength of the van der Waals interaction; in 6Li, r0 ’
63a0. For short-range contact interactions, Eq. (8) becomes

 �c �
1

n2
� �g13 � �g12�h 

y
1 �0� 

y
2 �0� 2�0� 1�0�i: (9)

The correlation function is related to the free energy, F,
of the system by the thermodynamic identity
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We now take r0 to be independent of the states of the
atoms. From Eq. (9) we then find the mean shift:
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12
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When the magnitude of the scattering lengths are
 r0,
which for 6Li is always valid above B � 600 G, the factor
�g13= �g12 is ’ 1; the shift then involves only the renormal-
ized interactions, depending inversely on the scattering
lengths. This result has the same qualitative behavior, in
the regime when kjaj 
 1, where k is a typical particle
momentum, as for predictions based on a mean-field shift
calculated from the real part of the forward scattering
amplitude in a dilute gas in the absence of effective range
contributions [5].

The derivative @�F=V�=@g�1
12 < 0 behaves perfectly

smoothly at the resonance in the 12-channel, and at zero
temperature its value there is�� �2

F, where �F � p2
F=2m

is the free particle Fermi energy and pF is the Fermi
momentum. (At characteristic densities �2� 1013 cm3,
p�1
F � 2000a0 [5].) We assume that n1 � n2 � n from

here on. From the Monte Carlo calculations in Ref. [6] of
the energy E at zero temperature we estimate that
@�E=V�=@g�1

12 ’ �0:50�2
F at the 12-resonance at B ’

834 G. Then �c � �g13n�
�1@�F=V�=@g�1

12 ��pF=ma13;
this result, valid for a13 
 r0, scales as

������
�F
p

. On the
other hand, at a 13-resonance (B ’ 690 G), �c �
��g12n��1@�F=V�=@g�1

12 . As we see, the average clock
shift remains finite, even when scattering is resonant.

Figure 1 shows the correlation function @�E=V�=@a�1
12

calculated from the data of Ref. [6] as a function of B for
equal populations at zero temperature. In the BCS limit,
the correlation function tends to the Hartree-BCS result,
n2 ��2= �g2

12, where � is the gap, while in the Bose-
Einstein condensation (BEC) limit (0< pFa12 
 1) the
system is composed entirely of 12-molecules with binding
energy 1=ma2

12, and @�E=V�=@g�1
12 � �4�n=m2a12, di-

verging as a12 ! 0. For small positive scattering length
in a gaseous atomic state limit the correlation function
tends to the Hartree value n2, as on the BCS side. The
large drop in @E=@a�1

12 seen in Fig. 1 for B below�700 G
reflects the presence of 12-molecules in the initial state.

In the limit in which the bare couplings are small, j �gj 

4�r0=m, the bare and renormalized couplings are equal,
and the correlation function becomes simply n2; thus

 �c � n�g13 � g12�; (12)
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the expected weak coupling result. The intermediate re-
gime in which r0 
 jaj 
 p�1

F is more complicated since
here short-range correlations as well as bound states in the
appropriate channel play a role. From Eq. (11) we find in
this regime for an initial state without 12-molecules that

 �c �

�
g12 �

g2
12

g13

�
n �

�
�g13 � g12� �

�g13 � g12�
2

g13

�
n;

(13)

which differs from the weak coupling result (12) by a
factor g12=g13. To derive this result by another route, we
note that the correlation function in the absence of mole-
cules is given by the Hartree approximation, n2, multiplied
by the square of the Jastrow factor that takes into account
short-range correlations due to the interatomic interaction.
At low energy, the Jastrow factor at the range of the forces
is essentially 1� a12=r0 � g12= �g12, the ratio of the exact
to the noninteracting two-particle wave function [7]. Thus
h y1 �0� 

y
2 �0� 2�0� 1�0�i � �g12= �g12�

2n2 [8] which, when
substituted into Eq. (9), gives Eq. (13).

The difference between the result (12) and (13) lies in
the distribution of spectral weight for transitions in the two
cases. The first term g13 � g12 in the last expression in
Eq. (13) is the weak coupling result.

The second term, however, arises from short-range cor-
relations, including, for g13 > 0, 13-molecules. The
squared matrix element for free-bound transitions is pro-
portional to �g13 � g12�

2 [9,10], and the 1=g13 dependence
reflects the fact that the binding energy of the molecule
(1=ma2

13) increases with decreasing g13. (Strongly bound
13-molecular states are not described by the simple contact
interaction model, but frequencies of transitions to them in
general lie outside the range explored in experiment.) For
a13 < 0, there are no bound states, but higher-lying states
with kinetic energies of order 1=ma2

13, arising from short-
range correlations, extend the spectral weight out to fre-
quencies of order �1=ma2

13 and contribute �� 1=a13 to
the sum rule [11].

In the BEC limit, pFa12 
 1, the system is composed
entirely of molecules of binding energy EB � 1=ma2

12. The
energy density of the system is just E=V � �n=ma2

12, and
from Eq. (11) we obtain

 �c � 2EB�1� a12=a13�; (14)

as can also be calculated from Ref. [9].
In applying our results to experiment it is important to

consider the extent to which, for a12 > 0, molecules are
present in the initial state. The experiment of Ref. [5] is
carried out on a time scale short compared with that to
create diatomic molecules via three-body collisions. Thus
the correlation function entering the sum rule is that of the
molecule-free metastable state. On the other hand, in the
initial state in the experiment of Ref. [3], molecular states
were equilibrated, and their effects must be included in the
correlation function. Furthermore, comparison with ex-
periment requires that measurements be carried out over
the entire frequency range, on scales �1=ma2

13, where
there are significant contributions to the spectral weight.

The solid lines [curves (a) and (b)] in Fig. 2 show the
predicted clock shift for equilibrated 6Li, in units of �F=@
in the region�600–1200 G at zero temperature. Scattering
lengths are taken from Ref. [12], and we assume pF �
1=2000 a�1

0 . The dash-dotted line [curve (c)] shows the
result (14) for a noninteracting gas of molecules. The
dashed part of curve (a) below the 12-resonance is the
difference of the full Monte Carlo result (b) in the 12-
molecular region and the two-body contribution (c). It is a
measure of the many-body contribution to the shift below
the 12-resonance.

The correct picture of rf field excitation combines both
coherent rotation of the initial state with transitions that
change the number of elementary excitations of the system
and thus lead to a width, �, of the spectrum I�!�. For times
short compared to !�1

R and ��1 the rf field indeed starts to
rotate all j2i atoms coherently into j3i. For a strong drive,
with !R 
 �, the many-body state undergoes Rabi oscil-
lations, damped on a time scale ���1. The long-time
behavior, when all oscillations have damped out, is cap-
tured by the golden rule [13].

Under an instantaneous rotation of j2i to j�i, the j1�i
state produced has the same spatial wave function as j12i.
However, the bare amplitude for �1; �� ! �1; �� scattering,

3

2

1

0
1000900800700

Magnetic Field [G]

h
Ω

c 
/ε

F
-

(a)

(b)

(c)

a13 resonance

a12 resonance

FIG. 2 (color online). Calculated clock shift for a gas of 6Li
atoms at zero temperature as a function of magnetic field. See the
text for details.
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FIG. 1. Correlation function @�E=N�=@a�1
12 in units of pF=2m

calculated from the data of Ref. [6].
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�g1� � �g12cos2�� �g13sin2�, differs from the bare 12 am-
plitude by � �g � �g1� � �g12 � � �g13 � �g12�sin2�. One can
understand Eq. (9) from this point of view, by noting that
since the spatial wave functions of j1�i and j12i are
identical, the difference of their energies (and free energies
at nonzero temperature) is, for small �, E1� � E12 �

� �gh y1 �0� 
y
2 �0� 2�0� 1�0�i.

The rotated state j1�i is not, in fact, an energy eigen-
state, and thus the response has a width. Under rotation the
interaction energy becomes
 

Hint�� �g12cos2�� �g13sin2�� y1 
y
� � 1

�� �g13cos2�� �g12sin2�� y1 
y
� � 1

�� �g13� �g12�sin�cos� y1 � 
y
� �� 

y
� �� 1; (15)

where j�i � cos�j3i � sin�j2i is the superposition of
single particle states j2i and j3i orthogonal to j�i. The
first term in Eq. (15) is the original interaction with a
modified coupling constant, in terms of states j1i and
j�i, instead of j1i and j2i. The second term acting on a
rotated state without � atoms present vanishes. The final
term, however, mixes the two particles in states j1i and j�i
into j1i and j�i. Thus while the external rf field coherently
rotates the initial state, the latter interaction decoheres the
rotated state, leading to a mixture of energy eigenstates and
a response with nonzero width. Even in the absence of the
final term, the rotated state is not an eigenstate ofHs, since
the spatial wave function of an eigenstate with �g1� differs
from that with the original �g12.

The lowest order perturbative approach [14] does not
include collective effects, e.g., screening of the inter-
action by the medium, and fails to satisfy the sum rule in
the presence of interactions. As indicated in Ref. [15],
these effects must be included by summing chains of
bubble diagrams. Such terms are especially important in
the superfluid state, since they take into account transitions
to states in which the phase of the condensate is altered
globally.

In summary, we have shown from sum-rule arguments
that the average clock shifts in strongly interacting Fermi
gases are finite at Feshbach resonances. The interaction
model we have employed is admittedly crude, since it does
not allow for the many bound states that exist for real
interatomic potentials. Detailed calculations of the spectral
distribution must be done microscopically. In addition to
the self-energy corrections to propagators, it is necessary
to include vertex corrections, as pointed out in Ref. [15].
Such effects are important even in a low-density gas,
where one finds interference terms between 12-scattering
and 13-scattering processes [16]. These processes,
which correspond to the Aslamazov-Larkin diagrams for
fluctuation-induced effects in superconductors [17], will be
discussed in a future publication. In addition, for detailed
comparison with experiment it is necessary to take into
account the inhomogeneity of the particle density.
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Note added in proof.—Clock shifts in Fermi gases have
been considered independently by Punk and Zwerger [18],
who arrive at a number of the same conclusions as we do.
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