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We report on an experimental study of quantum transport of atoms in variable periodic optical
potentials. The band structure of both ratchet-type asymmetric and symmetric lattice potentials is
explored. The variable atom potential is realized by superimposing a conventional standing wave potential
of �=2 spatial periodicity with a fourth-order multiphoton potential of �=4 periodicity. We find that the
Landau-Zener tunneling rate between the first and the second excited Bloch band depends critically on the
relative phase between the two spatial lattice harmonics.
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Transport properties of quantum objects subject to a
periodic potential are determined by the particle’s band
structure. The energy spectrum here splits into continous
energy bands separated by band gaps. For example, the
more than 20 orders of magnitude difference in electrical
conductivity between an isolator and a good conductor thus
finds a natural physical explanation [1]. In recent years,
atoms confined in periodic optical potentials, so called
optical lattices, have developed a powerful tool for the
observation of effects known or predicted in solid state
physics [2]. So far, the band structure has been exploited
only for sinusoidal lattice potentials, as can be realized
with the ac Stark shift of optical standing waves. In re-
markable experiments with such standing wave lattices,
Bloch oscillations and Landau-Zener transitions have been
observed [3–5].

Here we report on experiments studying the band struc-
ture of optical lattices with variable inversion symmetry
and shape, as a step towards simulating the variety of
potential forms that nature provides us in the system of
electrons in natural crystals. The used potentials are real-
ized by superimposing a conventional standing wave lat-
tice of �=2 spatial periodicity with a �=4 periodicity lattice
realized using the dispersion of higher order Raman tran-
sitions. By varying the phase between the two spatial
harmonics, symmetric and ratchet-type asymmetric lattice
potentials are realized, which exhibit a different band
structure. We experimentally demonstrate that the strength
of interband transitions for an atomic Bose-Einstein con-
densate depends on the shape of the lattice potential.

Before proceeding, let us point out that in semiconductor
heterostructures effects of the inversion symmetry of quan-
tum wells have been studied using magnetotransport [6]. In
the area of atomic physics, directed transport has been
achieved in driven ratchet systems with the temporal sym-
metry broken by dissipative processes [7]. Further, in
theoretical works, atom transport has been studied in peri-
odic double well systems [8]. Let us begin by describing
our calculations of the band structure in a Fourier-
synthesized atom potential realized by superimposing

two lattice potentials of spatial periodicities �=2 and �=4:

 V�z� �
V1

2
cos�2kz� �

V2

2
cos�4kz� ’�; (1)

where V1 and V2 denote the potential depths of the two
lattice harmonics, respectively, and ’ the relative phase.
According to Bloch’s theory [9], the band structure of the
periodic potential can be derived by solving the eigenvalue
equation Mcql � E�n�q c

q
l , where the quasimomentum q con-

ventionally is restricted to the first Brillouin zone: �@k <
q < @k. Here we search for the eigenenergies Eq�n� of the
eigenstates jn; qi �

P
lc
q
l e
i2lkz using the coupling matrix

M with elements Mjj � �2l@k� q�2=2m, Mj;j�1 �

M�j�1;j � V1=4, and Mj;j�2 � M�j�2;j � V2=4ei’, where
the index n denotes the band number. The matrix can be
readily diagonalized. For the lattice potential of Eq. (1),
Fig. 1 shows a spatial lattice potential (left) and the corre-
sponding band structure (right) for different values of the
relative phase ’ of the two spatial lattice harmonics. It is
clearly visible that the gap between the first and second
excited band is strongly dependent on the value of the
relative phase, while no such significant modification of
the splitting between the other shown bands is visible.
Physically, the variation of this splitting on the relative
phase of the lattice harmonics can be understood by the
interference of the second order Bragg scattering ampli-
tude of the standing wave potential of periodicity �=2 with
the first order Bragg scattering amplitude of the �=4 peri-
odicity multiphoton lattice potential, which both contribute
to this band gap. In the limit of a very shallow lattice with
the four-photon contribution being a small perturbation,
i.e., V2 � V1 � Er (where Er � @

2k2=2m denotes the
atomic recoil energy), the size of this band gap is deter-
mined by the simple analytical expression jV2

1=8Er �
ei’V2j, which directly shows the two interfering contribu-
tions of coupling Rabi frequencies arising from different
lattice harmonics. For larger potential values, higher order
corrections come into play, but by numerical diagonaliza-
tion of the coupling matrix M, the band structure for
arbitrary potential values is readily determined. The band
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gap reaches a maximum value for ’ � 0� in which case
the lattice potential resembles a periodic sequence of hills
[Fig. 1(a)]. On the other hand, the band gap reaches its
minimum value for ’ � 180�, corresponding to an array
of potential dimples in the spatial lattice structure
[Fig. 1(c)]. For a suitable choice of potential values, the
band gap between first and second excited band can even
disappear. The situation of spatial lattice potentials with
broken spatial symmetry, as, e.g., the sawtooth-like struc-
tures shown in Fig. 1(b) for ’ � 	90�, yields an inter-
mediate value of the band gap.

We experimentally exploit the band structure of the
Fourier-synthesized lattice by means of quantum transport
experiments. Specifically, the size of the gap between first
and second excited Bloch bands is measured by means of
Landau-Zener tunneling of atoms in an accelerated lattice
potential. The acceleration provides an inertial force in the
moving lattice frame, emulating a force on atomic wave
packets. The Landau-Zener tunneling probability can be
estimated to be � � exp��ac=a�, where ac � ��2=�4@2k�
with � denoting the width of the energy gap.

Our method for generating a lattice potential with vari-
able spatial symmetry and form is similar as described
previously [10]. For the generation of the fundamental
frequency, we use a conventional standing wave lattice

potential, as achieved with two counterpropagating optical
waves with frequency ! detuned from an atomic reso-
nance. The resulting potential V�z� � ���=2�jE�z�j2,
where � denotes the dynamic atomic polarizability and
E(z) the electric field, is proportional to cos2kz �
�1� cos2kz�=2, yielding the well known �=2 spatial peri-
odicity of optical standing waves. In a quantum picture, the
atoms undergo virtual two-photon processes of absorption
of a photon from one mode followed by simulated emis-
sion into the counterpropagating mode. In principle, a
potential with periodicity �=4 could be achieved by replac-
ing the absorption and the stimulated emission cycle by a
four-photon process induced by photons of wavelength �,
as indicated in Fig. 2(a) (right). The spatial periodicity of
the achieved multiphoton lattice contribution is �eff=2 �
�=4, where �eff � �=2 denotes the effective wavelength of
a two-photon field. Figure 2(b) shows the used scheme for
a multiphoton lattice potential with periodicity �=4, which
is based on a three-level configuration with two stable
ground states jg0i and jg1i and one spontaneously decay-
ing excited state jei [11,12]. Compared to the four-photon
ladder scheme, in this improved approach one absorption
(stimulated emission) process has been replaced by a
stimulated emission (absorption) process of a counterpro-
pagating photon, respectively. A minimum of three laser
frequencies is required to suppress standing wave effects,
and the atoms are irradiated with two optical beams of
frequencies !��! and !� �! from one side and a
further beam of frequency ! from the counterpropagating
direction. The high frequency resolution of Raman spec-
troscopy here allows to clearly separate in frequency space
the desired four-photon process from lower order contri-
butions. The described scheme can be extended to higher
lattice periodicities, where in general an effective potential
with periodicity �=2n can be achieved by a 2nth order
process [12]. By combining lattice potentials of different
spatial periodicities, arbitrarily shaped periodic potentials
can be synthesized.

Our experimental setup has been described in [10,13].
Briefly, light for generation of variable atomic lattice po-

FIG. 2. (a) Left: Virtual two-photon process in a conventional
standing wave lattice with �=2 spatial periodicity. Right: Virtual
process contributing to a lattice potential with �eff=2 � �=4
periodicity in a ladder level scheme. However, unwanted stand-
ing wave effects dominate in this simple approach. (b) Improved
configuration for realization of a four-photon lattice with �=4
spatial periodicity. This scheme is used in our experiments to
generate a second spatial lattice harmonic.
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FIG. 1. Spatial potential (left) and band structure (right) for a
periodic atom potential V�z� � V1 cos�2kz�=2� V2 cos�4kz�
’�=2 for different values of the phase ’ between lattice har-
monics: (a) ’ � 0�: periodic sequence of hills, (b) ’ � 90�

(solid line) and ’ � �90� (dashed line): sawtooth-like poten-
tials, (c) ’ � 180�: periodic sequence of dimples. Here, V1 �
4Er and V2 � 1:2Er were used for the sake of clarity as an
example for a set of potential values in which the splitting
between first and second excited Bloch band vanishes at ’ �
180�. The size of this band gap can be studied by Landau-Zener
tunneling of atoms, as indicated in the plots.
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tentials is produced by a tapered diode laser tuned some
2 nm to the red of the rubidium D2 line. The emitted
radiation is split into two, and each of the partial beams
pass an acoustooptic modulator. The modulators are used
for beam switching and to superimpose several optical
frequencies onto a single beam path, as is required to
generate superpositions of a standing wave potential and
a four-photon lattice potential by realizing the scheme of
Fig. 2(b). After passing the modulators, the two beams are
directed through optical fibers and send in a counterpropa-
gating geometry onto a rubidium (87Rb) Bose-Einstein
condensate.

Our Bose-Einstein condensate is produced all-optically
by evaporative cooling of 87Rb atoms in a CO2-laser dipole
trap. During the evaporation, a magnetic field gradient is
activated, resulting a spin-polarized condensate with 1:6

104 atoms in the jF � 1; mF � �1i ground state. A mag-
netic bias field generates a frequency splitting of !z ’
2�
 805 kHz between neighboring Zeeman ground
states. The direction of the magnetic field forms an angle,
respectively, to the optical beam, so that atoms experience
��-, ��- and �-polarized light simultaneously. For gen-
eration of a multiphoton lattice potential with the scheme
of Fig. 2(b), the F � 1 ground state components mF � �1
and 0 are used as states jg0i and jg1i, while the
5P3=2-manifold serves as the excited state jei. The
Raman detuning � is 2�
 50 kHz. The used potential
depths are V1 ’ 3Er and V2 ’ 2Er for the lattice contribu-
tions with periodicities �=2 and �=4, respectively, and
different values of the phase ’ between the two spatial
harmonics were used in the course of the experiments.
Experimentally, the potential values of both lattice har-
monics and the phase ’ can be monitored by a series of
Raman-Nath diffraction experiments on pulsed optical
potentials and Rabi oscillations [10,14], so that all parame-
ters of the Fourier-synthesized lattice potential of Eq. (1)
are known. One of the lattice beams with frequency ! is
used for both the standing wave and the four-photon lattice
potential. When this beam is acousto-optically detuned by
a small amount �Dopp, the reference frame in which the
optical potential is stationary moves with a velocity vrel �

�Dopp=2� � �=2, where � denotes the laser wavelength. We
adiabatically load the atomic Bose-Einstein condensate
into the first band by transferring the atoms into a lattice
potential moving with vrel � q0=m ’ 1:5@k=m.

The lattice beams form an angle of 41� relatively to the
axis of gravity, and the ballistic free atomic fall accelerates
the atoms over the band gap between the first and second
excited Bloch band. Figure 3 shows the result of a mea-
surement monitoring for different final values of the atomic
quasimomentum. Here, two different lattice forms were
investigated. For a phase shift ’ ’ 0� (dots), correspond-
ing to a potential form with a sequence of hills, atoms are
Bragg diffracted at the band gap towards higher velocities.
In contrast, for a phase shift ’ ’ 180� (crosses), corre-
sponding to a lattice consisting of a periodic sequence of

dimples, the ballistic free atom flight is hardly modified by
a band gap between the first two excited bands. We attrib-
ute this striking modification of transport properties on the
potential shape to the strong dependence of the size of the
band gap between the first two excited Bloch bands on the
relative phase ’ between lattice harmonics. For a phase
shift ’ � 180�, almost all atoms undergo Landau-Zener
transitions over the band gap near q � 2@k (corresponding
to the second gap at q � 0 in the reduced zone scheme),
while adiabaticity is better achieved with ’ � 0�, giving
evidence for an increased splitting of the band gap. At the
band gap, Bragg diffraction changes the atomic momentum
in units of 4@k.

For a more detailed investigation of the band gap we
have recorded the Landau-Zener tunneling rate as a func-
tion of the phase between the lattice harmonics. For this
measurement we have increased the beam detuning �Dopp

with a constant rate, so that the lattice potential is accel-
erated relatively to the atomic frame with an acceleration
of 6:44 m=s2, somewhat exceeding the projection of the
Earth’s gravitational field onto the beam axis. Figure 4
shows experimental data for the fraction of tunneled atoms
as a function of phase’ between the two lattice harmonics.
The data fit well to a sinusoidal curve, as shown by the
solid line. Notably, asymmetrically shaped ratchetlike po-
tentials result in an intermediate value of the Landau-Zener
tunneling rate, while smallest (largest) values are achieved
for hill-type (dimple-type) periodic arrays. It is interesting
to note that this characteristics is in contrast to the behavior
in dissipative lattices, where maxima and minima of the
particle transport are achieved for ratchetlike potentials of
different symmetry. Experimentally, a related observation
has been made in pulsed, driven ratchet potentials [7].

In subsequent experiments, we have studied the varia-
tion of the Landau-Zener tunneling rate on the depth of the
optical standing wave contribution to the total optical
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FIG. 3 (color online). Temporal variation of the mean atomic
velocity in units of the recoil velocity (vr � @k=m) for an atom
with initial momentum of q0 � 1:5@k subject to the earth’s
gravitational field and the lattice potential for a phase ’ of 0�

(dots) and 180� (crosses) between lattice harmonics. The earth’s
gravitational force along the lattice axis is F � mg cos�, where
� ’ 41�.

PRL 99, 190405 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
9 NOVEMBER 2007

190405-3



potential. The four-photon contribution with periodicity of
�=4 here was left constant [see Eq. (1)]. Figure 5 shows
experimental data for the interband tunneling for a phase
shift’ � 0� (dots) and’ � 180� (crosses). For the former
phase shift value, the tunneling rate decreases with the
standing wave contribution V1 for all parts of the curve,
as is consistent with a monotonely increasing energy gap
between the bands. On the other hand, for a phase shift
’ � 180� between lattice harmonics a local maximum of
the tunnelling rate is observed for an intermediate value of
V1. This is attributed to the width of the band gap between
the lowest two excited bands reaching a minimum for
certain value of V1, as is expected when considering that
the band gap for this phase shift value is diminished by
destructive interference of the amplitudes of second order
Bragg scattering of the standing wave potential and first

order Bragg scattering of the potential with periodicity
�=4. The inset of Fig. 5 is to indicate the dependence of
the theoretical value of the band gap as a function of V1.
We interpret the experimental data of Fig. 5 as clear
evidence for the destructive (constructive) interference of
scattering amplitudes contributing to the size of the band
gap at a phase shift of ’ � 180� (’ � 0�), respectively,
between lattice harmonics.

To conclude, we have studied the band structure of
optical lattices with variable spatial symmetry and shape
by means of quantum transport of an atomic Bose-Einstein
condensate. We find that the Landau-Zener tunneling rate
between the first and second excited Bloch band depends
critically on the phase between spatial Fourier components
of the lattice, which is attributed to interference effects
within the band spectrum.

For the future, we expect that optical lattices of non-
standard shape allow for novel quantum gas phases, and
model solid state physics problems such as quantum mag-
netism and frustrated lattices [15–17]. A different perspec-
tive includes quantum ratchets with atomic Bose-Einstein
condensates [18]. An exploration of the Hamiltonian
ratchet regime is expected to allow for novel quantum
dynamical phenomena.

We thank P. Hänggi for discussion in which the idea to
study Landau-Zener tunneling in lattices of variable shape
arose. We acknowledge financial support of the Deutsche
Forschungsgemeinschaft.
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FIG. 5 (color online). Fraction of atoms that have tunneled
from the first to the second excited band as a function of the
potential depth V1 of the standing wave contribution to the total
lattice potential for a phase ’ � 0� (dots) and ’ � 180�

(crosses) between lattice harmonics. The inset indicates the
variation of the expected gap size on V1 for ’ � 0� (dashed
line) and ’ � 180� (solid line).
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FIG. 4. Fraction of atoms that have tunneled through the
energy gap between first and second excited Bloch bands as a
function of phase ’ between spatial lattice harmonics. The
experimental data (dots) has been fitted with a sinusoidal curve
(solid line).
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