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Correlators and Fractional Statistics in the Quantum Hall Bulk
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We derive one-particle and two-particle correlators of anyons in the lowest Landau level. We show that
the two-particle correlator exhibits signatures of fractional statistics which can distinguish anyons from
their fermionic and bosonic counterparts. These signatures include the zeros of the two-particle correlator
and its exclusion behavior. We find that the one-particle correlator in finite geometries carries valuable
information relevant to experiments in which quasiparticles on the edge of a quantum Hall system tunnel

through its bulk.
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The fractional quantum Hall effect (FQHE) is believed
to provide the paradigm of a many-body system that hosts
quasiparticles that are anyons, i.e., that obey fractional
statistics interpolating between the quantum statistics of
fermions and bosons [1,2]. The fractional charge of the
FQHE quasiparticles has been measured through shot
noise experiments [3], but despite a variety of theoretical
proposals [4—7] and experimental attempts [8], an unam-
biguous signal of their anticipated fractional statistics is
still lacking. Most of the theoretical and experimental
effort has been expended on investigating the effects of
anyon statistics on the tunneling and correlations of the low
energy edge quasiparticles [9]. The anyon bulk correlations
[4] have received less attention—as has the problem of
relating the bulk correlations to the QH edge. Given that
anyons are intrinsically two dimensional, a study of their
bulk properties is much called for. In this Letter, towards
this end, we formulate and analyze anyon correlators in the
lowest Landau level (LLL) for unbounded and bounded
geometries [10].

A useful tool for investigating bulk statistics-induced
effects is the two-particle kernel K, (7, 7, F1;, 72;). This
is the amplitude for two quasiparticles to start at points 7y;
and 7,; and end up at points 7 and 7, (see Fig. 1). It was
first used in the 1950s by Hanbury Brown and Twiss
[11,12] to measure stellar diameters and is used in modern
optics experiments to reveal the “bunching” properties of
photons. In this Letter we derive the form and properties of
K, and K,(Fs, 7;) which is the amplitude for a single
quasiparticle to propagate from an initial point 7; to a final
point 7, for LLL anyons. In nuclear scattering, it is well
known that the amplitude for two incoming fermions in
vacuum to scatter at an angle of 77/2 is zero in the absence
of a magnetic field [11,13]. We use K, to show that anyon
statistics gives rise to similar dramatic effects in LLL
anyon-anyon correlations that qualitatively differ from
the situation of no magnetic field and can be distinguished
from their bosonic and fermionic counterparts.

We begin with a two-dimensional system of two anyons
in a magnetic field; the wave function by definition picks
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up a phase of /™ (e~ ™) upon a anticlockwise (clock-
wise) exchange of the particles. The parameter « lies in the
range —1 < a = 1; @ = O and 1 correspond to bosons and
fermions, respectively. Such LLL anyon models provide an
effective description of quasihole excitations associated
with the addition of vortices to the QH bulk [14-16]. In
particular, for Laughlin states [15], quasiholes have frac-
tional charge ¢ = —e/m and statistics @ = 1/m, where m
is an odd integer [17—-19]. As our interest is in quasihole
propagation over short distances of the order of 300 nm [3],
we neglect Coulomb interaction effects which only be-
come significant over longer distances [20] and can in
principle be treated perturbatively [4].

The Hamiltonian for two anyons in a perpendicular
magnetic field B = B? has the decoupled form

1 gB _\2 1 gB _\2
H=—<PX+—Y> +—<PV——X>
4 ’

c 4 c
1 gB \2 1 gB \2
+—(pe+—y) +—(p, — =x), 1
R ) Il G S B

in terms of center of mass and relative variables. We
require that when the two particles are exchanged in a
clockwise fashion their wave function gains a phase factor
e'™ [16]. Here the anyons are assumed to have mass u
(which is immaterial when states are projected to the LLL)

FIG. 1. Two representative configurations for anyons starting
at points 7; and 7,;, and ending at points 7, and 7,;. As the
particles are indistinguishable, it is not possible to determine
which of two possible paths 7 and /1 each particle takes.
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and charge ¢g. We have assumed the symmetric gauge A=
(B/2)(—yx + x9). The center of mass coordinate and mo-
mentum are given by R = (7, + 7,)/2 and P = p, + b,
while the relative coordinate and momentum are given by
F=7 —Fand p=(p — ps)/2.

The eigenstates of Eq. (1) are products of eigenstates for
the center of mass and relative coordinate systems. In the
LLL, the center of mass eigenstates are given by

where n =0, 1,2, .... The complex parameter Z = (X +
iY)/l represent the components of R, rescaled by the

magnetic length [ = \/iic/eB. The relative coordinate ei-
genstates are given by

rescaled coordinate 7. The eigenstates in Eq. (3) respect the
anyon exchange property; we will set & = 1/m below.

We can now evaluate the one- and two-particle kernels,
defined in imaginary time 7 as

K](Ff; ?[) = len(;f)gb;;(;i)e_E"T/h’
n

Ky (Fyp, Paps Frip Poy) = Z(ﬁn(ﬁf)lp;(ﬁi)e—E,,T/h
n

X, Py (F)e B/, )
p

In the LLL, all the energies E, are degenerate and can be
set to zero. Thus the kernels have no time dependence.
Using Egs. (2) and (3), the one-particle kernel takes the
form

S 1 1 .
@ (darm) =1/ z \wta P71, K\Gpi7) = 5— s EXP[— oz + 1zl — 2zfz',~)}
= TQp +a+ 1)(2\%) eXp[ 8_m} ) )
where p =0,1,2,..., and z = (x + iy)/l represents the and the two-particle kernel takes the form
|
e e s 1 1 5 5 s ) . .
Ky (Fyp, Faps Trip Foy) = Qami? exp[—mﬂzlfl +lzaf? + |zl + 2ol — (2 + 22 + Z2i))i|
« 3 L = 2 — 2)/AmPri/m "
= rep+1/m+1)

We remark here that a similar form for K, was presented by
Laughlin in Ref. [15] using different reasoning.

In the case of fermions or bosons, the two-particle
kernel can be separated into products of individual
paths, i.e., Ky (Fiy, Fop; Py, Poi) = Ky (Fip3 F1i) K (Fop, o) +
K\ (72, 71;)K (71, 75;). Consequently, in the case of
Fig. 1(a), K, can only vanish if the magnitudes of the
kernels along paths of type I and I/ equal each other.
This implies that (z;; — 22£)(z}]; — 25;) is imaginary, i.e.,
that 7, — 7, is perpendicular to 7,; — 7; and § = /2.
Furthermore, for the two separable paths to cancel one
another, their phases must differ by 7. This second condi-
tion requires that the quantity (eB/hc)Z - (Fj; — Fp;) X
(71 — Foy) must be an even (odd) integer for fermions
(bosons). The geometric interpretation of this is that K,
vanishes when the phase difference between paths of type /
and /1 is 7r; this phase difference is given by the sum of the
Aharonov-Bohm phase picked up by the loop in Fig. 1(a)
and the phase 77/0 due to an exchange of the two fermions
or bosons. On setting B = 0, we recover the result that
when there is no magnetic field, the two-particle kernel
vanishes for fermions if 8 = 7/2.

For the case of anyons, neither the two-particle wave
function nor the two-particle kernel is of a separable form.
However, a detailed analysis of Eq. (6) shows that the
geometric arguments presented above still hold [21].
Thus, in the configuration of Fig. 1(a), the two-particle

[

kernel vanishes for the same conditions stated for fermions
and bosons, except that the statistical phase picked up by
the anyons for a closed loop is *7/m for a clockwise or
anticlockwise loop. Hence, as shown in Fig. 2(a), the
kernel vanishes if the rectangle in that figure is a square
(0 = m/2), and its area is quantized as 2r2 =
(hc/eB)m(n — 1/2 + 1/(2m)). In general, if the charge
of the quasiparticle is e* and the statistics parameter is «,
the kernel vanishes if the area of the square is (hc/e*B) X
(n—1/2 + a/2). (For incompressible fractional QH
states with filling fraction different from 1/m, ¢*/e and
« differ from each other [22].)

FIG. 2 (color online).

Magnitude of the two-anyon kernel vs
the radius r and the angle 6 and ¢ for the configurations shown
in Figs. 1(a) and 1(b), respectively, for m = 3. Figure 2(a) shows
the first four zeros of the kernel lying on the line § = 7/2, while
Fig. 2(b) shows that the kernel vanishes as either r or ¢
approaches zero.
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The above suggests an experiment for measuring the
charge and statistics of the quasiparticles. Consider a con-
figuration in which there are two sources and two detectors
of anyons, corresponding to the positions zy;, zp; and z; ¢,
2o, respectively, which are arranged as a square. Holding
the area of the square and the filling fraction v fixed, one
can gradually change the magnetic field and determine
some successive values of the field where a simultaneous
observation of the anyon tunneling current in the two
detectors gives a null result. By the above arguments, a
plot of the field B versus the number n will be a straight
line whose slope will give the charge ¢* and whose inter-
cept will give the value of a. We should point out here that
the concept of fractional statistics is valid only when the
separation between two anyons is greater than about 10/
[22]; for v = 1/3, [ is about 10 nm.

The two-particle kernel also exhibits features which
reflect the exclusion statistics of anyons [23]. For the
case shown in Fig. 1(b), the kernel exhibits the power-
law dependence K, ~ |¢|¥™ as ¢ — 0. Physically, the
amplitude for two anyons to start at nearby points and to
have a small scattering angle vanishes as the angle be-
comes small. Similarly, the probability that two anyons are
a distance r apart is related to the two-particle kernel with
?li = ;]f = (0 and 7_:21' = ;zf = 7. The kernel goes as rz/’"
as r — 0. For the case m = 1, we reproduce the result that
the probability that a fermion is at a given distance r away
from another fermion is proportional to 2. On the other
hand, as m — oo, one particle does not experience the
existence of another; this is indeed the situation for con-
densed bosons. For intermediate values of m, the power-
law behavior shows that the presence of one particle ex-
cludes that of another (thus the Laughlin quasiparticles are
fermionlike); the antibunching property becomes more
pronounced for smaller values of m.

Towards understanding how the bulk features described
above can affect properties of the boundary, we now turn to
finite-size geometries which are relevant to the physical
setting of the Hall bar. As a first step, we will analyze one-
particle properties here. [An analysis of two-particle prop-
erties in bounded systems is needed to completely study
the signatures of fractional statistics in edge-state quasi-
hole tunneling through the bulk, but this is beyond the
scope of this Letter.] In a geometry such as the one shown
in Fig. 3, we will provide a simple quantum mechanical
derivation of one-particle correlations along the edge,
thereby addressing the assumptions made on phenomeno-
logical grounds for one-particle tunneling events in pre-
vious treatments. The system is confined in the y direction
via a potential V(y). The Landau gauge A = —By% proves
to be convenient here. The corresponding one-particle
eigenstates are of the form ¢ ,(x, y) = ¢**f} ,(v), where
the function f ,, depends on the confining potential and the
momentum k = 27 p/L, along the x direction, where p is
an integer and L, is the length of the strip.
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FIG. 3 (color online). Quantum Hall state in a strip geometry
of width L in the presence of a confining potential V(y). States
are filled up to a Fermi energy Er. Tunneling across the strip can
take place via impurities denoted by U;.

We first consider a simple example with no external
potential V(y) except for hard boundaries confining the
strip to a width L, centered at y = 0. In the LLL (n =
0), the eigenfunctions f,; are Gaussians proportional to
exp[—(y + ki%)?/(21?)], where k ranges from —L, /(21%) to
L,/ (2/%). The one-particle kernel can be evaluated using
Eq. (4); its salient features are as follows. For large width
L, > I, the magnitude of the kernel goes as |K;|~
exp[—(z; — z7)?/(41%)] when the points lie well within
the bulk or on opposite edges y; = —y; = L,/2. If the
two points lie on the same edge, y; =y, = L,/2, the
kernel obeys the power law |K;| ~ 1/]x; — x| in the limit
x; — xy >> 1. This is consistent with the power-law decay
obtained from the edge-state picture for integer filling v =
1. However, in the interesting case of the width becoming
comparable to the magnetic length, | K;| shows oscillations
with a wavelength of about 27/%/ L, which become more
pronounced when the two points lie on opposite edges.
This oscillatory behavior suggests that finite-size effects in
realistic situations could cause significant deviations from
predictions for extended systems.

As an application of the one-particle correlator to several
proposals and experiments, we now consider tunneling
between integer quantum Hall edges caused by scattering
off localized impurities which we model as

U(x,y) = > Upd(x = x,)8(y = yn). (7

In the absence of a confining potential, all k states are
degenerate and the scatterers cause mixing between all
states. In reality, as shown in Fig. 3(b), the confining
potential breaks the degeneracy, and electrons fill states
up to a Fermi momentum & and an associated width L, =
2yr. The confining potential produces an effective electric
field along the edge, £ = —(dV/dy),—,,. Electrons expe-
rience a drift velocity given by vy = ¢|€/B| and they
move in opposite directions along the top and bottom
edges. Within the first-order Born approximation and as-
suming a linearized potential close to each edge (and thus a
linearized dispersion about the Fermi energy), we find that
the scatterers couple each k state to the corresponding *k
states [21]. The reflection amplitude for a right-moving
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edge state k = ky to scatter to a left-moving state k = —kp
is given by
i i2k 2l L \?
r=—-—> U, e expl—y; /"] —
hvg 4 'l
X exp[—yi/I’] ®)

This amplitude is directly related to the matrix element for
particles to tunnel between edge states; it describes one-
particle propagation from one edge to another. Our deri-
vation of Eq. (8) is simple enough that it can go beyond the
strip geometry to any smooth confining potential and to
any configuration of the tunneling sites.

The form of Eq. (8) has several noteworthy features. As
expected, the tunneling matrix element for each impurity
decays exponentially over a magnetic length. For an im-
purity localized on an edge at a point x,,, tunneling to the
other edge occurs along the shortest path. The treatment
here is valid for electrons with charge e. In general, con-
sistent with derivations of tunneling matrix elements which
explicitly use the Laughlin wave function [24], we expect a
similar form for any particle having charge ¢* with this
charge replacing e; hence the decay of the bare tunneling
matrix element is enhanced or suppressed by a factor of
e*/e in the exponent. For the case of more than one
impurity, the reflection coefficient is sensitive to interfer-
ence effects arising from multiple paths. In the case of two
impurities of equal strength lying on either edge at points
x1 and x,, reflection amplitudes off the two impurities have
a phase difference of 2kp(x, — x;) = 2yp(x, — x1)/12.
Thus, as phenomenologically described in Ref. [7], we
explicitly see Aharonov-Bohm interference arising from
the particle traversing two different paths enclosing a
rectangular area of length |x; — x,| and width 2yp.

In conclusion, we have analyzed two ubiquitous enti-
ties—the one- and two-particle kernels—in the physically
motivated situation of charged particles in a strong mag-
netic field. The two-particle kernel in the quantum Hall
bulk contains information on statistics which is strikingly
manifest in the zeros of the kernel. The one-particle kernel
in a finite geometry is shown to provide an understanding
of certain features of bulk mediated tunneling between
edges, such as the tunneling amplitude and Aharonov-
Bohm physics in a system with two tunneling centers. In
principle, some of our predictions for the two-particle
kernel can be tested in realistic gate-defined Hall geome-
tries. Our studies show that a complete explanation of
experiments that measure two-particle properties, whether
of bulk or edge-state quasiparticles, will need to take into
account correlations and exclusion effects in the bulk.
More spectacularly, our studies indicate that it may be
possible to perform experiments in quantum Hall geome-
tries, perhaps involving multiedge tunneling, wherein cor-

relations show signatures of fractional statistics in angular
dependences similar to those observed for fermions and
bosons in scattering experiments.
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