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Experiments show that bubbles covered with monodisperse polystyrene particles, with particle to
bubble radius ratios of about 0.1, evolve to form faceted polyhedral shapes that are stable to dissolution in
air-saturated water. We perform SURFACE EVOLVER simulations and find that the faceted particle-covered
bubble represents a local minimum of energy. At the faceted state, the Laplace overpressure vanishes,
which together with the positive slope of the bubble pressure-volume curve, ensures phase stability. The
repulsive interactions between the particles cause a reduction of the curvature of the gas-liquid interface,
which is the mechanism that arrests dissolution and stabilizes the bubbles.
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It is well established that colloidal particles adsorbed on
bubble surfaces (armored bubbles) can increase bubble [1-
4] and foam [5,6] lifetimes by several orders of magnitude
in gas-saturated solutions. This increase in stability has
applications in fields as diverse as biomedicine [7], mate-
rials science [8], mineral flotation [9], and food processing
[10]. Nevertheless, in spite of the many reports of long-
lived foams and bubbles covered with particles, the mecha-
nism for the stabilization remains an open question.

In this Letter we address the issue of stabilization using
both experimental and numerical approaches. We begin by
considering the dissolution of a single component gas
bubble in a liquid saturated with the same gas. The driving
force for dissolution is the pressure difference inside the
bubble due to the mean curvature H and the surface ten-
sion 7y that exists at the bubble surface. This Laplace
pressure difference, AP = 2yH, is positive for spherical
bubbles, and the bubble is thus unstable to dissolution.
On thermodynamic grounds, dissolution in saturated so-
lutions can be slowed down if this overpressure is re-
duced or even stopped if the overpressure is eliminated.
As we show below, the stability of armored bubbles, which
adopt various nonspherical and irregular shapes in gas-
saturated liquid, can be understood in terms of the local
geometry of the liquid-gas interface as characterized by the
mean and Gaussian curvatures at the scale of individual
particles.

We note that several studies provide insight into the
relevant particle-interface configurations. For example,
numerical studies of fluid infiltration of an infinite packing
of spheres on a plane have determined the equilibrium
shape of the gas-liquid interface as a function of the contact
angle of the particles [11]. The corresponding stability of
the interface was addressed in [12], while a 2D analytical
study of armored bubbles, including dissolution, found that
the “particles’ pack into a circular shape, while the inter-
face becomes flat [13]. These studies suggest a possible
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link between bubble stability, the particle configuration,
and the equilibrium shape of the fluid-fluid interface.

We perform experiments with negatively charged,
surfactant-free fluorescent latex particles (Interfacial
Dynamics). Partially coated bubbles were produced as
described in [14]. An aqueous sample containing the bub-
bles was placed on a microscope slide and viewed with an
inverted microscope. The small size of the sample ensures
that it is saturated with gas. All experiments were carried
out at room temperature and repeated at least 3 times.
Images were acquired with a CCD camera and treated
with Image J to obtain a projection of the visible surface
of the armored bubble (for details, see [15]).

In a typical experiment, the particles adsorbed on a
partially covered bubble (i.e., the particles are not close
packed) are dispersed and exhibit thermal motion
[Fig. 1(a)]. Occasionally, a few particles form transient
aggregates. Analogous equilibrium configurations of col-
loidal particles on liquid droplets of fixed volume have
been observed [16]. In the case of dissolving gas bubbles,
the interparticle distances become smaller until Brownian
motion is arrested. This “jammed” state can also be
reached by packing the bubble surface with colloidal par-
ticles in a microfluidic device [17], by fusing two or more
particle-covered bubbles [18], by removing a small amount
of volume from a particle-covered oil droplet [19] and
through the coarsening of a bicontinuous phase [20].
Even after the particle movements have stopped, the
bubble continues to lose gas and deforms away from a
spherical shape [Fig. 1(a)] before eventually stabilizing. It
is this nonspherical bubble that remains stable to further
dissolution.

Furthermore, we observe that in air-saturated solutions
the final nonspherical shape obtained depends on the ratio
of the radius a of the particles and R of the bubble. Bubbles
with a/R < 0.1 appear crumpled when they stabilize
[Fig. 1(b)]. Crumpled shapes were apparently first reported
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FIG. 1. (a) Experimental images of dissolution of a partially
covered bubble, 3 s between each frame. Interparticle distances
are reduced and the bubble develops planar facets as it stabilizes
(white dashed lines). (b)—(d) Various stable crumpled and fac-
eted shapes of armored bubbles, a/R: (b) 0.008, (¢) 0.19,
(d) 0.22. The white arrows indicate missing particle defects at
the vertices of the bubble. Bubble shapes like these remain stable
for days if not longer. Scale bars 8§ pm.

by Ramsden [1]; see also, for example, [6,19]. However,
for bubbles with a/R = 0.1, we observe faceted polyhe-
dral structures [Fig. 1(c) and 1(d)], which as far as we know
have not been reported in the literature. We observe that the
intersection of the facets is a fivefold disclination and is
often unoccupied by a particle [white arrows in Fig. 1(c)
and 1(d)]. Note that a/R = 1 corresponds to clusters of
particles which have been studied experimentally [21] and
via simulations [22].

To gain insight into these particle-covered systems we
perform SURFACE EVOLVER (SE) [23] simulations follow-
ing [22]. We focus on the regime where a/R = 0.1, and
here we report results for a bubble covered with 122
particles (a/R = 0.13). For verification of reproducibility,
including results for larger number of particles, see [15].

Particles of volume V,, are modeled as fluid droplets
embedded on a larger fluid droplet (the bubble) of volume
V. We define the reduced volume as V/ V,. We chose the
particle surface tension (nondimensional) to be 30 times
larger than the bubble surface tension. The particles thus
remain essentially spherical [22], while the bubble inter-
face is free to evolve as the simulation proceeds. A particle
contact angle of 40 degrees was implemented based on
previously reported measurements [24]. To further ap-
proximate the solid particles, an exponential repulsive
potential is introduced in order to ensure particle noninter-
penetrability (see [15]). Since large-scale rearrangements
are rare close to the jamming transition, we restrict the
interparticle potential calculation to nearest neighbors and
next nearest neighbors which makes tractable the simula-
tions with large numbers of particles. To approximate the
volume reduction that accompanies dissolution, the vol-
ume V of the bubble is decreased by 2% decrements in
each numerical step. SE calculates the equilibrium con-
figuration of the particles and the shape of the gas-liquid

surface at each step by minimizing the sum of the gas-
liquid surface energies and the total repulsive energy be-
tween the particles.

The simulated armored bubble evolves from a spherical
shape [Fig. 2(a)1] towards a polyhedral shape with facets
as the reduced volume V/ V, is decreased [Fig. 2(a)2],
which is consistent with our experimental observations.
Large volume reductions lead to the inward buckling of
the facets [indicated by the black arrow in Fig. 2(a)3]. To
quantify these observations we calculate the asphericity of
the bubble [25], which measures the deviation of the shape
from that of a sphere. The asphericity is defined as
AR?/R? = 1/(NR*) SN |(R; — R)*, where N is the num-
ber of particles, R; the distance between the center of the
particle i and the center of mass of all the particles, and the
mean radius R = 1/NSY | R,. We observe a sharp in-
crease of the asphericity when the bubble starts to facet
and a significant change of slope when inward buckling is
observed [Fig. 2(b)].

We next calculate the pressure difference AP, using an
algorithm in SE, between the bubble and its surroundings
as a function of the reduced volume [Fig. 2(b)]. Unlike a
normal bubble, where AP is a monotonically increasing
function for decreasing reduced volume [Fig. 2(b)], AP of
an armored bubble becomes a decreasing function at
(V/V,)1 and eventually reaches zero at (V/V,).,. These
results qualitatively agree with the shape of the experimen-
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FIG. 2. (a) Simulated bubble shapes obtained for V/V,, equal
to (1) 203, (2) 138, and (3) 120. The darker particles represent
fivefold disclinations. The arrow indicates the facet which has
buckled inward. (b) Top graph. Left vertical axis: (@) Laplace
pressure, AP, vs V/ V, of the armored bubble. (+) For com-
parison, AP of a bubble without particles is shown. (O) 2 times
the absolute value of the fluid-fluid interface mean curvature,
2|H|, vs V/V,. Right vertical axis: (X) asphericity of the
armored bubble vs V/V,. Bottom graph. Left vertical axis:
(@) the surface energy Eg of the fluid-fluid interface and (O)
the total energy E of the armored bubble vs V/V . Right vertical
axis: (X) total repulsive energy Ep between particles vs V/V,,.

188301-2



PRL 99, 188301 (2007)

PHYSICAL REVIEW LETTERS

week ending
2 NOVEMBER 2007

tally measured pressure curve of millimeter-size particle-
covered oil droplets [19]. Figure 2(b) demonstrates the
correlation between AP and the asphericity. Since the
particles are held by the interface, this correlation suggests
that the actual gas-liquid interface is being deformed as the
volume is decreased. Indeed, the absolute value of the
mean curvature |H| of the gas-liquid interface follows
exactly the variation of AP [except near (V/V,)., as SE
gives only |H|]. It is thus clear that the vanishing of AP is
due to the decrease of mean curvature of the gas-liquid
interface towards zero.

Furthermore, we observe that the slope of the pressure-
volume curve becomes positive at (V/V,)., ie.,
dAP/dV >0, which is a requirement for stability [13].
For gas-saturated solutions, as considered in our experi-
ments, AP also has to vanish to ensure mechanical equi-
librium. However, more generally chemical potentials
must be equal on either side of the interface [26], which
can be satisfied with AP # 0. Thus, in the cases of a
supersaturated liquid, the bubble may stabilize at inter-
mediate stages of faceting provided that the reduced vol-
ume is less than (V/V,). (the limit being almost no
faceting), while in moderately undersaturated solutions
an armored bubble should stabilize with a buckled shape.

In order to check the stability in terms of energy, we
calculate the total energy E, defined as the sum of the total
surface energies Eg of all of the interfaces and the total
repulsive energy Ep between the particles as a function of
the reduced volume [Fig. 2(b)]. All energies are normal-
ized by yL2, where L = V)/* = (47/3)"/3a. For compari-
son both E¢ and Ep are plotted in Fig. 2(b). We observe that
E and Eg change slopes as the particles start interacting,
reaching a local minimum at the faceted shape when the
particle interactions are the largest. Inward buckling of the
facets [Fig. 2(a)3] corresponds to a local increase of E in
the energy landscape. Thus, the local minimum is a meta-
stable equilibrium.

The peculiar “kink” that the Ep curve exhibits during
volume reduction [Fig. 2(b)] can be traced directly to the
packing of the particles on the bubble surface. As the
particles are pushed together during volume reduction,
the 12 fivefold disclinations serve as the vertices of buck-
ling [dark particles in Fig. 2(a)] and are pushed away from
the center of the bubble. The increased distance slightly
reduces Ep. This kink in E also leads to the kink in the |H|
and AP curves.

It appears that the configuration of the gas-liquid inter-
face is intimately linked to the stability of the armored
bubble. We thus sought to characterize the evolution of the
gas-liquid interface whose shape can be fully specified by
the local variation of the mean curvature H and the
Gaussian curvature G. Obtaining accurate local numerical
values of G for all simulated reduced volumes through SE
proved impossible at the level of refinement of our surface
due to numerical errors. Thus, we chose four representative
stages in the evolution of the bubble and systematically

refined the triangulation of the interface to reduce numeri-
cal noise. The spatial distributions of H and G were then
determined with Matlab using algorithms for H [27] and G
[28]. Representative images of the interface at approxi-
mately (V/ V)2 are reported in a color-coded scheme in
Fig. 3(a) and 3(b). Away from the particle contact lines the
mean curvature H is very nearly constant, as expected on
thermodynamic grounds and close to zero; G has a natural
distribution since the Gaussian curvature need not be
constant.

Despite the high level of refinement, it is apparent that
there is still some dispersion in H (and in G as well), whose
origins are (i) difficulty in numerical calculations near
contact lines and (ii) errors associated with the triangula-
tion valence around the vertices, which can be amplified
during the determination of G [29]. Nevertheless, we can
draw some conclusions about the global evolution of the
surface curvatures. Indeed, a pair of values (H;, G;) is
associated with each vertex defining the interface. To
characterize the global nature of the interface, we calculate
the number density of vertices whose curvatures range
[H,H +0.03] and [G,G +0.03]. We report in
Figs. 3(c)-3(f) the plots of the contour maps of this bin-
ning of the H — G space; shading corresponds to the
number density of points. As a guide, a sphere would
correspond to a parabola (G = H?) in these plots and the

FIG. 3 (color online). Interfacial distributions of (a) the mean
curvature H and (b) the Gaussian curvature G, for V/ vV, =
138.1, which is close to (V/V,).,. 2D histogram of the number
of vertices of the interface whose curvatures range between
[H,H +0.03] and [G,G + 0.03] obtained for V/Vp =
(c) 253, (d) 162.3, (e) 138.1, and (f) 117.5. Total number of
vertices 63 016.
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origin (0, 0) corresponds to a planar interface. At large
reduced volumes, when the particles are not interacting,
the distribution of points is concentrated on the parabola,
where both H and G are positive [Fig. 3(c)]. Then, for
decreasing values of reduced volume, the center of the
distribution shift towards zero in the H direction, while
in the G direction it becomes negative. These results
indicate a saddle-shape deformation of much of the inter-
face as the volume is reduced.

The deformation of the interface is a consequence of
Newton’s third law, e.g., [13]. The repulsive interactions
produce an outward normal force on each particle, because
of their confinement on a closed surface. This outward
force must be balanced by an inward saddle-shaped defor-
mation of the fluid-fluid interface. This reactive deforma-
tion of the interface, which is required for mechanical
equilibrium at each volume reduction, leads to a reduction
in the Laplace pressure. We emphasize that this saddle-
shaped deformation should appear on any initially spheri-
cal fluid-fluid interface carrying repulsive particles, as soon
as the particles are close enough to interact. The details of
the interparticle repulsive force are not relevant for this
argument, the limiting case being that of a hard sphere
repulsion between the particles, where the interface devi-
ates from spherical only when the particles enter into
contact.

In conclusion, we have shown that armored bubbles can
adopt stable faceted shapes as gas dissolves into the sur-
rounding liquid. These shapes are part of a continuous
transition as a function of the ratio of the particle to bubble
radius from clusters (a/R = 1) [21], to facets (a/R = 0.1),
to crumpled shapes (a/R << 0.1) [1]. Through simulations
we have demonstrated that the faceted state is a minimum
energy configuration characterized by a mostly saddle-
shaped gas-liquid interface with zero mean curvature.
This minimum is also marked by the vanishing of the
Laplace overpressure AP, and dAP/dV > 0, which pro-
vides stability against dissolution. We expect these results
to be robust for the crumpled shapes characterized by
smaller particle to bubble radius ratios. The results we
obtained in this study should also be applicable to describe
the interface and behavior of liquid-liquid systems.
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