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By means of analytical and numerical methods we analyze the phase diagram of polaritons in one-
dimensional coupled cavities. We locate the phase boundary, discuss the behavior of the polariton
compressibility and visibility fringes across the critical point, and find a nontrivial scaling of the phase
boundary as a function of the number of atoms inside each cavity. We also predict the emergence of a
polaritonic glassy phase when the number of atoms fluctuates from cavity to cavity.
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Over the past two decades a considerable understanding
of the physics of strongly interacting systems has been
gained by a judicious design of controlled many-body
systems. Successful examples of this sort were optical
lattices or Josephson junction arrays (see the reviews
[1,2]). The recent proposals [3–5] to realize a Mott phase
of polaritons have paved the way to use coupled cavities
for the study of strongly correlated phenomena in a con-
trolled way. The rich scenario which emerges in these
systems stems from the interplay of two effects. Light-
matter interaction inside the cavity leads to a strong effec-
tive Kerr nonlinearity between photons. By controlling the
atomic level spacings and the photonic resonance fre-
quency inside the cavity, it is possible to achieve a photon
blockade regime [6–9], thus suppressing photon fluctua-
tions in each cavity. On the other hand, photon hopping
between neighboring cavities favors delocalization thus
competing with photon blockade. Coupled cavities can
be realized in a wide range of physical systems, from
nanocavities in photonic crystals [10] to Cooper pair boxes
in superconducting resonators [11]. It is therefore possible
to study a whole new class of strongly interacting systems
that, for the first time, can be addressed and measured
locally.

The polariton Mott insulator has been predicted in two
cases. Hartmann et al. [3] discussed a cavity doped with N
four-level systems in the limit of large N, while Angelakis
et al. [5] and Greentree et al. [4] analyzed the Jaynes-
Cummings [12] model as a scheme for the light-matter
interaction; in this last case, an experimental proposal has
been also devised by Neil Na et al. [13]. Hartmann et al.
found a mapping onto a Bose-Hubbard model [14] for the
polaritons in the limit of large number of atoms and large
detuning. In the other case, the phase boundary was eval-
uated at a mean field level for one [4] and many [13] atoms
in cavity. The exact phase diagram has not been worked out
so far; this is what we accomplish in this work for the one-
dimensional case. By means of numerical simulations and
analytical calculations we are able to locate the phase
boundary and its nontrivial scaling as a function of the
number of atoms in the cavity. Furthermore, we consider
the case where the number of atoms fluctuates in each

cavity and we show that this leads to the existence of a
polariton glass.

The Hamiltonian for the system composed by an array of
L identical coupled cavities is given by the local
Hamiltonian on each cavity and the photon hopping term
between different cavities:
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As in [4,13], we add a chemical potential�. In the previous
expression t is the nearest-neighbor intercavity photon
hopping, and ai is the photon annihilation operator in the
ith cavity; the local contribution H �a�

i describes the light-
matter interaction. We will consider the following two
models.

Model I.—A collection of N two-level systems which
interact with photons via a Jaynes-Cummings coupling
H �I;a�
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we have defined the spin operators S�i �
PN
j�1 �

�
j;i (� �

�, z) and ��j;i are the atomic raising/lowering operators for
the jth atom, � denotes the transition energy between the
two atomic levels, ! is the resonance frequency of the
cavity, and � is the atom-field coupling constant (�, !,
�> 0). The total number of atomic plus photonic excita-
tions and the total atomic spin S2

i on each site are conserved
quantities. The ground state is always in the subspace of
maximum spin, S � N=2.

Model II.—In the Jaynes-Cummings model at a large
detuning �, when the atomic spontaneous emission is
minimized, also the strength of nonlinearities is weakened.
In order to overcome this problem, a different scheme
involving four-level atoms, has been proposed [15] pro-
ducing a large Kerr nonlinearity with virtually no noise. In
the interaction picture, in electric dipole and rotating wave
approximations the model reads H �II;a�
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lm
j � jlijhmj are the

atomic raising and lowering operators (l � m), or energy
level populations (l � m) for the jth atom. The transition
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j3ij ! j2ij is driven by a classical coupling field with Rabi
frequency �; the cavity mode of frequency !cav couples
the j1ij ! j3ij and j2ij ! j4ij transitions with coupling
constants g1 and g2; the parameters � and � account for
the detunings of levels 3 and 4, respectively. The atomic
part of the system wavefunction for the ith cavity can be
fully characterized by the number of atoms in each of the
four possible states: fjn1; n2; n3; n4ig, with

P4
i�1 ni � N.

The total number of photons plus the number of atomic
excitations in the whole system (where states j2ij, j3ij
count for one excitation, while j4ij counts for two excita-
tions), is a conserved quantity. Hereafter we assume g1’
g2�g and define the relative atomic detuning �w����.

Mott insulator.—The phase diagram of the coupled cav-
ity system is characterized by two distinct phases [3–5]:
the Mott Insulator (MI) is surrounded by the superfluid
(SF) phase. In the MI polaritons are localized on each site,
with a uniform density � � npol=L, where npol is the total
number of polaritons in a system of L cavities; there is a
gap in the spectrum, and the compressibility � � @�=@�
vanishes. A finite hopping renormalizes this gap, which
eventually vanishes at t�. The phase boundaries between
the two phases can thus be determined by evaluating, as a
function of the hopping, the critical values of � at which
the gap vanishes. Our data have been obtained by means of
the density matrix renormalization group (DMRG) algo-
rithm with open boundary conditions [16]. In numerical
calculations, the Hilbert space for the on-site Hamiltonian
is fixed by a maximum number of admitted photons nphot

max .
We chose nphot

max � 6 for model I and nphot
max � 4 for model II;

we also retained up to m � 120 states in the DMRG
procedure, such to guarantee accurate results, and checked
that our data are not affected by increasing nphot

max . We
simulated systems with up to L � 128, and up to N � 5
atoms per cavity [17]; the asymptotic values in the ther-
modynamic limit have been extracted by performing a
linear fit in 1=L. By combining these results with strong
coupling perturbation theory [18] we were able to locate
the phase boundaries for all values ofN. Most of this Letter
is devoted to the case � � ! for model I and � � � � 0
for model II. These regimes could not be accessed by the
perturbative approach of Ref. [3].

Let us start with zero photon hopping (t � 0). For
model I, at fixed N, there exists a value ��I of the detuning
�I � !� � such that, for �I > ��I , the width of the lobe
with a polaritonic density � � N is greatly enhanced with
respect to the other lobes. We estimate ��I numerically and
find a scaling ��I 	

����
N
p

. For model II, at a given relative
atomic detuning �! > 0 the situation is similar to model I,
where the resonating lobe with � � N is much larger than
the other lobes, if � < ��. In the opposite case, �! < 0,
some of the lobes disappear.

For model I, numerical data at finite photon hopping for
different values of N are shown in Fig. 1; the phase
diagram of model II is shown in Fig. 2. Several interesting

features emerge in the structure of the lobes. In both
models, for fixed N, contrary to Bose-Hubbard model,
the critical values t� of the hopping strength at which the
various lobes shrink in a point are not proportional to the
lobe width at t � 0. Furthermore, the ratio between the
upper and the lower slopes of the lobes at small hopping is
greater than the one predicted in Ref. [18]; this discrepancy
disappears on increasing the number of atoms inside the
cavity. In terms of an effective Bose-Hubbard model, this
may be understood as a correlated hopping of the polar-
itons, i.e., the hopping depends on the occupation of the
cavity.
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FIG. 1 (color online). Upper panels: Phase diagram for the
Hamiltonian model I, with N � 1, 2 atoms inside each cavity at
� � !. Lower panels: System compressibility � for the first lobe
(i.e., � � 1), for different system sizes L, with N � 1 (left) and
N � 2 (right).
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FIG. 2 (color online). Upper panels: Phase diagram of
model II. The detuning parameters are set to zero and g=� �
1. Lower panels: System compressibility � for the first lobe, for
different system sizes L, with N � 1 (left) and N � 2 (right).
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A more detailed analysis of the transition at filling one
can be performed by considering the compressibility. In
our DMRG simulations we fix the total number npol of
excitations in the system, thus fixing the polariton density
� inside each cavity in the insulating regime. In the lower
panels of Figs. 1 and 2 we plot � in the first insulating lobe
(with a polariton density � � 1) as a function of t for
different sizes of the system, for the models I and II. By
exploring the mapping to the Bose-Hubbard model we
construct the full curve t� versus N. The effective repulsive
interaction Ueff between polaritons, at � � 1, is given by
Ueff�1� � @2E�n�=@n2jn�1 [where E�n� is the ground state
energy of Hamiltonian H i with n polaritons], that is
exactly the opening of the first lobe at t � 0. For model I
it is possible to give an exact analytic formula: Ueff�1� �

2
����
N
p

1�

������������������������
1� 1=�2N�

p
�, while for model II it can be eval-

uated numerically. As N increases, Ueff�1� decays to zero;
for both models Ueff�1� 	 1=

����
N
p

as far as N ! 1.
Moreover the effective repulsion depends on the number
of polaritons, contrary to the Bose-Hubbard model; this
dependence weakens, and eventually vanishes in the limit
n� N. Therefore the mapping becomes accurate when N
increases. The polaritonic hopping teff can be obtained by
performing a strong coupling expansion in t. For model I
we found that t� 	 2t�eff , while for model II we get t� 	
2 N�1

N t�eff . The critical hopping is then obtained using the
value for the critical point t�eff=Ueff ’ 0:3 [19]. Figure 3
(upper part) displays both numerical (blue squares) and
analytical estimates (red circles) for the two models. This
analysis shows that the Bose-Hubbard model provides a
good description already for N 	 10. A study of the dy-
namics is needed to further strengthen this observation. We
point out that, in experimental realizations, the parameter
that can be changed to cross the transition is the detuning.
For model I this is shown in the lower part of Fig. 3.

Visibility of photon interference.—The phase transition
can be detected by analyzing the phase coherence of
photons [20], in a way similar to what has been done
for the Bose-Hubbard model [20,21]. The interference
pattern of the photonic density is proportional to the pho-
ton number distribution S in the momentum space:
S�k� � 1

L

PL
j;l�1 e

2	ik�j�l�=Lhayj ali. The visibility of inter-
ference fringes can then be defined as V � �Smax �
Smin�=�Smax � Smin�. The visibility is strictly zero only
in the limit t � 0, where the interference pattern S is
constant. When t is increased, the visibility itself increases,
until it saturates to the maximum value V � 1 in the
superfluid regime. This description is well adapted even
for photon coherence in our hybrid light-matter system, as
shown in Fig. 4. The existence of different phases can also
be detected by measuring fluctuations in the number of
polaritons, as discussed in [3].

Polaritonic glass phase.—Up to now we have assumed
that the number of atoms in each cavity was constant and
equal to N. In certain implementations this requirement

might be demanding. Here, however, we consider this
problem from a different perspective and show that,
when N changes from cavity to cavity, it leads to the
emergence of a polariton glass. Following [14], this phase
is characterized by a finite compressibility, gapless excita-
tion spectrum, and zero superfluid density.
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FIG. 3 (color online). Upper graphs: Critical hopping t� in the
first lobe as a function of the number N of atoms inside each
cavity, for the two different models with all the detunings set to
zero. Dashed black lines indicate a behavior t� 	 1=
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and are
plotted as guidelines. Lower graph: Critical hopping t� for
model I with N � 10 atoms per cavity [23], as a function of
the relative detuning �. Blue squares have been evaluated with
the DMRG. Red data are estimates obtained from the effective
on-site polaritonic repulsion Ueff at zero hopping, with filling
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FIG. 4 (color online). Photonic visibility V in the first insu-
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Random fluctuations in the number of atoms per cavity
lead to disorder in the on-site light-matter interaction
strength. This effect can cause significant consequences
only in the limit of large N (we quantify this statement
below) where the mapping onto a Bose-Hubbard model
applies. A Bose glass phase has been originally predicted
[14] as a function of disorder in the chemical potential.
Recently it has been shown that fluctuations in the on-site
repulsion lead to a Bose glass as well [22].

We take advantage of the results obtained in [22] and the
mapping to an effective Bose-Hubbard model to give a
detailed estimate for the width of the polariton glass phase.
The key to our finding is to relate fluctuations in the
number of atoms to fluctuations in the on-site repulsion
Ueff . We suppose that each Ni is a random discrete
Gaussian variable with a mean value hNi, and a standard
deviation �N. Figure 5 displays fluctuations in the effective
on-site repulsion �Ueff as a function of the fluctuations in
the number of atoms, while in the inset of Fig. 5 we show
an example of such a variation, with hNi � 100, �N � 20,
in the case of model I. We can then use numerical data of
Ref. [22] to estimate where the polaritonic glass phase can
be observed. It has been shown that in the Bose-Hubbard
model, for a relative interaction �Ueff=hUeffi uniformly
distributed in an interval of length 2� � 0:5, a L � 200
sites system at filling � � 1:01 exhibits a Bose glass phase
for 0:078 & teff=hUeffi & 0:133. In our model with the
same polaritonic filling, if we take, e.g., hNi � 100 parti-
cles per cavity and we choose �N ’ 19 (such to have � �

0:25), a polaritonic glassy phase should be visible, in the
case of model I, for 7:51 10�3 & t=� & 1:401 10�2.
The situation is qualitatively the same for model II. The
polariton glass may be observed by measuring, at frac-
tional fillings, the photon visibility as a function of the
disorder. Anyway, a complete characterization of the polar-
iton glass requires a study of its dynamical behavior.

Concluding remarks.—In this work we have discussed
in detail the equilibrium properties of a chain of coupled
cavities. The results we presented here are general, in the
sense that they apply to all the systems described by
Eq. (1). An important issue is to understand the effect of
decoherence, decay, cavity losses,. . ., which occur in these
systems. These aspects have to be discussed for each
implementation (see, for example, [3,11]), together with
the effect of an additional possible external driving. The
combined presence of dissipation and external driving may
lead to a change of the universality class of the transition,
or to new phenomena associated to nonequilibrium phases.
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