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Phases of nonlinear double tearing modes are studied numerically. The first two phases lead to the
formation and growth of magnetic islands and are followed by a fast reconnection phase to complete the
process, driven by a process of neighboring magnetic separatrices merging and magnetic islands coupling.
The fast growth can be understood as a result of the island interaction equivalent to a steadily inward flux
boundary driven. Resistivity dependences for various phases are studied and shown by scaling analysis for
the first time. It is found that after an early Sweet-Parker phase with a �1=2-scale, a slow nonlinear phase in
a Rutherford regime with a �1-scale is followed by the fast reconnection phase with a �1=5-scale.
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Magnetic reconnection induced by resistive tearing
modes plays crucial roles in solar and laboratory plasmas
as the magnetic energy converts to kinetic energy and
sometimes causes violent plasma instabilities in the pro-
cess [1–4]. Multiple current layers are often formed in
various solar and astrophysical plasmas [5–11], as well
as in magnetic confinement configurations with a reversed
magnetic shear, or nonmonotonic profile of the safety
factor q, desirable for high performances and steady state
operations of advanced tokamaks [12–14]. It is well known
that such systems are subject to double, triple, or even
multiple tearing modes (DTM [9,15–25], TTM
[5,6,26,27], or MTM [11]). One of the necessary condi-
tions for the DTM to develop is that the distance between
the two resonant surfaces has to be close enough to get the
modes coupled. Otherwise, two ordinary tearing modes
(OTM) would develop even if the configurations had re-
versed magnetic shear regions [15,21,23]. The linear
growth rate of DTM induced by plasma resistivity and/or
anomalous electron viscosity has a scaling different from
and usually, except for m=n � 1=1 mode, higher than that
of the corresponding OTMs [15,21,27]. Similar conditions
and results can also apply to TTMs and MTMs [5,11].

In comparison with the numerical simulation results,
experiments showed that the nonlinear evolution of the
m=n � 2=1 DTM led to off-axis sawteeth observed in
the Tokamak Fusion Test Reactor (TFTR) [14]. Also re-
cently, a structure driven nonlinear double tearing insta-
bility for the m=n � 3=1 mode in tokamak plasmas was
studied [23–25]. It was pointed out that the magnetic
islands initially located at the inner and outer resonant
surfaces exchanged their radial positions with each other,
accompanying an abrupt growth of the instability. The
mechanisms for the instability were identified to be the
triangular deformation of the magnetic islands and the
resultant intense current point around the x point in a

simulation study [23–25]. Hence, the typical structure of
the deformed magnetic configuration was claimed to be the
crucial element driving the instability.

In Ref. [14], however, a similar simulation for the
m=n � 2=1 mode responsible for the off-axis sawtooth
crashes found four distinguishable phases in agreement
with the experiment, the early growth phase, the slow
nonlinear reconnection phase, the sawtooth phase, and
the final profile flatten phase. At the early growth and
slow nonlinear reconnection, the islands on different reso-
nant surfaces were well separated. In the sawtooth phase,
however, the inner islands moved outward through the X
points of the outer islands, while the outer islands moved
inward through the X points of the inner islands, with a
reconnection rate much faster than that in the Rutherford
regime [28]. Clearly, the multiregime feature of the recon-
nection process was quite similar to those in the m=n �
3=1 mode simulation [23–25]. Nevertheless, due to the
geometry of m=n � 2=1 mode, there is clearly neither
triangular deformation of the magnetic island nor the in-
tensive point-current that was thought to be responsible for
the fast reconnection regime. Furthermore, the model has
been also applied to solar plasmas. A numerical study for
solar flares and coronal mass ejection found a similar fast
reconnection regime due to island interaction but triangular
deformation [9]. Therefore, the cause for the fast recon-
nection regime is still in question. Also, the resistivity
dependence of the reconnection rate in the fast reconnec-
tion regime is not clear yet.

In this Letter, we revisit the nonlinear developments of
double tearing modes in a numerical study to address the
issue of how to understand the multiregime feature of the
DTM, as well as the scaling of reconnection rates in
various phases. In the numerical simulation, after an early
phase of Sweet-Parker regime reconnection, two phases of
nonlinear magnetic reconnection are revealed with a slow
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Rutherford regime reconnection phase followed by a �1=5

scale fast reconnection phase. And the fast growth of the
instability is shown resulting from the neighboring mag-
netic separatrix merging and equivalent inward flux driven,
which has been found in the late nonlinear development of
forced reconnection [29]. Also, a general rule in predicting
the final state of multiple-resonant-surface reconnection is
summarized. These results can have significant impacts on
magnetic fusion and solar plasma studies.

A typical two-dimensional slab with a scale length L0 in
the x direction and two layers of current flowing oppositely
along the z direction embedded in a standard sheared
magnetic field is applied, whereas no equilibrium flows.
The magnetic field is approximated as B � BTẑ�r�
� ẑ� with  �x; y� the magnetic flux given in Refs. [21,22].
And with qs � m=n the safety factor on the double reso-
nance surfaces, and R0 the major radius of the device, we
can choose an a on the order of the minor radius to satisfy
BT �

m
n
R0

a B0, where B0 is the asymptotic poloidal field.
The two-dimensional (or reduced) resistive magnetohydro-
dynamics (MHD) equations can then be written in dimen-
sionless forms
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The density �, plasma pressure P, lengths x and y,
magnetic field B, magnetic flux  , plasma velocity u,
and time t are scaled by �0, P0, L0, B0,  0 � B0L0, uA �
B0=

������������
4��0

p
, and �A � L0=uA, respectively. Also, � is the

adiabatic index. The dimensionless viscosity � and resis-
tivity � are normalized as � � �m=�uAL0�0� and � �
�m=�uAL0� with �m and �m being the plasma viscosity
and resistivity, respectively, and � � P0=�B2

0=8�� being
the poloidal plasma beta. The real time scale is then
characterized by the Alfven time �A � L0=uA, where for
tokamak plasmas L0 
 rs, with rs the poloidal radius of the
surface at x � 0. For the typical experiment parameters
such as on TFTR sited in Ref. [14], �A is on the order of
0.1–1 microseconds.

The equilibrium magnetic configuration applied is the
same as that in Ref. [21], with two resonant surfaces at x �
�xs � �0:25. A small initial perturbation of the magnetic
field is applied to the current layers of the m=n � 3=1
mode with the aspect ratio of R0=a � 5. The numerical
simulations are performed using a massively parallel code.

The simulation box is �1 � x � 1, 0 � y � 2, and peri-
odic and free boundary conditions are imposed at y � 0, 2,
and x � �1, respectively. A Runge-Kutta finite difference
scheme is used to solve the set of Eqs. (1)–(4), with fourth-
order accuracy in time and second-order accuracy in space.
The spatial step length is chosen to satisfy �x

����
�
p

and
the temporal step length �t is small enough to keep the
numerical accuracy and stability. The convergence of the
code was ensured by varying grid number and time step
size. The parameters are set as � � 5=3, � � 0:5, and � �
0:2� for a given � value, such that the viscosity effect is
negligible.

The time evolution of the plasma kinetic energy is given
in Fig. 1 for plasma resistivity� � 5� 10�5. Clearly, after
a short linear growth, the kinetic energy goes through four
developing stages as seen in the TFTR experiment [14]: the
early growth, transition, fast growth, and decay. It is shown
that the growths of the kinetic energy in the first two phases
may be fitted with scales as �� for the early growth and �1

for the transition phase, respectively. The numerical scal-
ing on resistivity in the three growth regimes are presented
in Fig. 2. Clearly, as resistivity deceases, � changes from
1=2 to 1.

In previous studies, it was found that DTMs had features
of non constant- reconnection [15,23]. Theories for non
constant- reconnection have shown that after a �1=3 scale
linear stage, there is a �1=2 early nonlinear reconnection of
Sweet-Parker regime [15,30,31]. The Sweet-Parker phase
is then followed by a slow Rutherford regime [32]. When
the resistivity is very small, however, the DTM system
degenerates into a two-OTM system despite the distance
between the resonant surfaces being unchanged [15]. In
such cases, the Rutherford regime directly follows the
linear regime [28]. Clearly, the results are in a good agree-
ment with the theories.

FIG. 1. Time evolution of the plasma kinetic energy Ek�
1
2�RR

�u2dxdy for a plasma resistivity of � � 5:0� 10�5.
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In the fast growth phase, however, the growth rate seems
almost independent of the plasma resistivity [24].
Nevertheless, by fitting growth rates in a broad range of
resistivity, it then obviously obeys a �1=5 scale, shown in
Fig. 2(b).

In order to understand the physical mechanism for the
fast growth, we analyze the mode development in Fig. 3,
following the structure evolution of the magnetic field lines
at four different moments. It has to be pointed out again
that there are two resonant surfaces at x � �xs � �0:25,
and, therefore, as seen in Fig. 3(a), there are two magnetic
separatrices formed, one being generated by the upper X
point and the other by the lower. The upper (lower) mag-
netic island in the middle (on the sides) of Fig. 3(a) is
formed by reconnection starting at the upper (lower) reso-
nant surface. In the early and transition stages, the two
separatrices are separated by the open field lines in be-
tween the two islands, seen in Fig. 3(a). As the islands
grow bigger, shown in Fig. 3(b), the lower branch of the
separatrix of the upper island and the upper branch of the
separatrix of the lower island just merge together. In the
other words, the edges of the two islands in between the
resonant surfaces are overlapped. Thus, as shown in
Figs. 3(b) and 3(c), the newly reconnected field lines
ejected to the island will reconnect again at the other X

point. Focusing ourselves on the small box surrounding the
lower X point [Fig. 3(b)], we can find that reconnection at
the upper X point generates flux onto the upper boundary
of the area surrounded to provide an inward boundary flow
to drive reconnection at the lower X point. Because of the
symmetry, the same process occurs at the upper X point.
Clearly, the process is the same as the inward flow bound-
ary driven reconnection studied previously, with a fast �1=5

scale growth [29]. Also shown in Fig. 3(c), the upper part
of the upper island shrinks in the y direction as reconnec-
tion goes on to push the whole structure of the island
downward while the lower island is pushed upward.
Eventually, the adjacent magnetic islands exchange their
relative positions in the x direction, until all field lines
between the resonant surfaces reconnected.

Shown in Fig. 4 is the two-dimensional profile of the
plasma current at t � 184, just before the fast growth
phase. It is clearly seen that there are very sharp current
peaks in the vicinity of the X points. The current peaks
spread in the y direction to extend to current sheets, leading
to the island position exchange shown in Fig. 3(c). When
the width of the reconnection region in the y direction is
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FIG. 3. The magnetic configuration at (a) t � 184,
(b) t � 202, (c) t � 210, and (d) t � 280, respectively.

FIG. 2. The growth rate �E of plasma kinetic energy and its
scaling on resistivity (a) the early nonlinear phase, in dots (b) the
second and third nonlinear phases, in triangles and squares,
respectively.
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shortest, the profile of the current forms a current point as
described in Ref. [24].

The simulation run for the m=n � 2=1 mode shows
similar results. Also, the above analysis for the reconnec-
tion process of the double tearing mode can also be ex-
tended to reconnection in plasmas with multiresonant
surfaces, or equivalently multicurrent layers. In general,
the magnetic field, or its reconnecting component, changes
sign across a resonant surface. Therefore, the magnetic
field in the outmost regions outside of the resonant surfaces
will have the same direction if there are even numbers of
resonant surfaces. In such systems, the field lines between
the resonant surfaces will be completely reconnected as
shown for the double tearing mode case. On the other hand,
the magnetic field in the outmost regions outside of reso-
nant surfaces will direct oppositely if there are odd num-
bers of the resonant surfaces. In such systems the
reconnection process for the field lines between the reso-
nant surfaces will eventually reach a saturated state with a
single magnetic island.

The multiphase nonlinear development of magnetic re-
connection of the double tearing modes is studied in the
numerical simulations. It starts with the early �1=2 scale
Sweet-Parker phase [15,30,31] followed by the �1 scale
slow Rutherford transition phase [32]. After the separatri-
ces of the magnetic islands merging together, the�1=5 scale
fast growth phase onsets. This fast growth can be under-
stood by the equivalent boundary inward flow drive [29].
Then, the decay phase follows to complete the reconnec-
tion process with all field lines between the resonant sur-
faces reconnected. A general rule in prediction of the final
state of magnetic reconnection in multiple-resonant-
surface systems is also summarized. It finds that the final
reconnected state of the systems with even (or odd) num-

bers of the resonant surfaces is of approximately parallel
magnetic field lines (or the single magnetic island). The
prediction can be applied to magnetic fusion, solar, and
astrophysical plasmas.
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FIG. 4 (color online). The profile of the current density JZ at
t � 184.
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