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We present a model (the electron force field, or eFF) based on a simplified solution to the time-
dependent Schrödinger equation that with a single approximate potential between nuclei and electrons
correctly describes many phases relevant for warm dense hydrogen. Over a temperature range of 0 to
100 000 K and densities up to 1 g=cm3, we find excellent agreement with experimental, path integral
Monte Carlo, and linear mixing equations of state, as well as single-shock Hugoniot curves from shock
compression experiments. In principle eFF should be applicable to other warm dense systems as well.
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Warm dense matter appears in giant planetary interiors
[1], inertial confinement fusion [2], and shock [3] or laser
[4] heated solids that become plasmas. It is a challenging
state to describe theoretically, as it lies in between the cold
matter described well by ground state quantum mechanics
[5,6], and the hot matter described well by classical plasma
models [7]. Reactions, dissociations, and ionizations may
occur simultaneously, and excited electron effects may be
important.

As a prototype system, we consider the case of hydro-
gen, which at room temperature remains insulating at
pressures as high as 342 GPa [8], but at 3000 K is already
conducting at 140 GPa [9]. This enhanced conductivity of
warm dense hydrogen may involve the participation of
electronically excited mixtures of H2 molecules, H atoms,
and other species along with free protons and electrons
[10].

We present a model (the electron force field, or eFF)
based on a simplified solution to the time-dependent
Schrödinger equation that with a single approximate po-
tential between nuclei and electrons correctly describes
many phases relevant for warm dense hydrogen. eFF com-
putes the energy of a collection of point charge nuclei and
single Gaussian function electrons [11] � � exp��r�
xi�

2=s2
i �� as a function of the nuclear and electron positions

plus the electron sizes. It approximates the total energy as
the sum of electron kinetic energies, electrostatic potential
energies, and Pauli exclusion interactions.

We first assume that electrons move independently of
each other, i.e., the wave function is a Hartree product.
Then the kinetic energy and electrostatic potential en-
ergies of electrons have well-known analytic forms (e.g.,
Eke � 3=�2s2�, Enuc�i��elec�j� � �ZiR
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have higher kinetic energy, consistent with the
Heisenberg uncertainty principle. The finite size of the
hydrogen atom, for example, results from the balance
between the kinetic energy of the electron and the electro-
static attraction of the electron to the proton.

However, as electrons are fermions, we make a correc-
tion to the independent electron assumption, and estimate a
Pauli exclusion energy as a pairwise sum between elec-
trons:
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with � denoting the spin of the electrons, and
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where �T is a measure of the kinetic energy change upon
antisymmetrization, and S is the overlap between two
Gaussian functions:
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where � � �0:2, �xij � xij 	 1:125, and �si � si 	 0:9.
This expression was derived by considering the difference
between the antisymmetric and symmetric combinations of
valence bond states, and assuming that kinetic energy
differences predominate; analogous approximations have
been reported elsewhere [12–14].

To compute the ground state, we minimize the energy of
the system, optimizing the nuclear and electron positions
and the electron sizes simultaneously [15]. We chose the
Pauli potential to obtain stable bonds between elements
from Z � 1–6. The specific form selected for the Pauli
potential distinguishes eFF from a method such as wave
packet molecular dynamics (WPMD [12]), which does not
produce stable molecules with elements Z > 1 and does
not describe the equation of state (EOS) of dense hydrogen
accurately. We optimized the three universal parameters of
the Pauli potential to reproduce the bond lengths of small
molecules such as CH4 [1.143 (1.094) Å, exact values in
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parentheses], C2H6 [dCC � 1:501�1:536� �A, dCH �

1:173�1:091� �A], LiH [1.689 (1.596) Å], and B2H6 [dBB �

1:744�1:757� �A, dBH1 � 1:347�1:331� �A, dBH2 �

1:243�1:207� �A]. No further optimization of parameters
was used in simulating warm dense hydrogen.

Applied to the ground state, eFF leads to reason-
able covalent bonds in H2 [dbond � 0:780�0:741� �A,
Ebond � 67:2�104:2� kcal=mol, exact values in paren-
theses] and metallic bonding in lithium metal [afcc �

4:401�4:420� �A, Eatomize � 60:3�37:7� kcal=mol]. For H2

at equilibrium the covalent bond is a bond-centered
Gaussian, while in face-centered cubic lithium the metallic
bonds are Gaussians located in octahedral interstitial loca-
tions coordinating six Li ions. The ability of the Gaussian
functions to move and change size provides them with
valuable variational flexibility [11].

To simulate materials at finite temperatures, we propa-
gate semiclassical electron dynamics [12,13,16,17], allow-
ing the positions of the nuclei and electrons, as well as the
sizes of the electrons, to change with time. Allowing
electrons to grow and shrink leads to important effects—
for example, warm hydrogen atoms have larger electrons
than cold hydrogen atoms, which causes increased Pauli
repulsion between atoms.

In the dynamics simulations, we represent electrons as
wave packets:

 � / exp
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Substituting the above expression into the time-dependent
Schrödinger equation and assuming a locally harmonic
potential produces the semiclassical equations of motion:
 

_px � �rxV; p � melec _x;

_ps � �@V=@s; ps � �3melec=4� _s:

Thus the average position of a wave packet obeys classical
dynamics (Ehrenfests’ theorem) with the addition that the
size of the wave packet obeys classical dynamics as well
[13]. With this method, the size and position of each
electron evolves independently, and we can obtain non-
adiabatic electron dynamics if desired.

We extract thermodynamic parameters from the simula-
tions using classical virial expressions, e.g., 3
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sum over all nuclear and electronic degrees of freedom
and take melec � mnuc. In order to compute quantities
dependent solely on the electronic degrees of freedom,
such as plasma oscillation frequencies or electrical con-
ductivity, a more rigorous separation of nuclear and elec-
tronic time scales is likely required.

Figure 1 shows the equation of state of solid deuterium
at 300 K computed using semiclassical dynamics with eFF.
We indicate density with the Wigner-Seitz radius rs, where
each atom occupies a volume 4

3�r
3
s . Pressure versus den-

sity data has been measured up to 120 GPa (rs �

1:52 bohr) at 300 K using diamond anvil apparatuses
[18]. The equation of state from eFF is in good agreement
with the results obtained over the pressure range of the
experiment.

We now consider the behavior of hydrogen at higher
temperatures. At 1 atm, H2 dissociates into atoms at
3960 K and the atoms ionize at 15 870 K (from the Saha
equation [19], which assumes an ideal gas). In the ideal gas
limit, the dissociation and ionization temperatures increase
with density, remaining separate events. To study the non-
ideal behavior of warm dense hydrogen, Saumon and
Chabrier constructed a linear mixing EOS [20] taking
into account contributions from molecular, atomic, ion-
ized, and metallic phases. Their model predicts that the
ionization temperature lowers to coincide with the disso-
ciation temperature in a plasma phase transition at rs �
2 bohr and T � 15 300 K.

Figure 2 shows the pair distribution predicted from eFF
as deuterium is heated from 9100 to 30 720 K at rs �
2 bohr. We find that deuterium gradually dissociates
from fluid molecules to fluid atoms over this temperature
range. Fluid molecules are characterized by strong peaks in
the proton-proton pair distribution at the D2 bond distance
and first solvation shell (0.74 and 2.3 Å), while fluid atoms
are characterized by a pair distribution that rises gradually
as r increases from 0.5 to 1.5 Å and then is a constant for
longer distances. The eFF midpoint of dissociation is at
T � 16 500 K (where rmin=rmax � 0:5), comparable to the
dissociation temperature (15 300 K) predicted by Saumon
and Chabrier.

FIG. 1 (color online). Equation of state for solid deuterium at
300 K and varying density. We show here that the pressures from
eFF dynamics are in good agreement with diamond anvil experi-
ments. Here constant number/volume/energy (NVE) dynamics
were performed in a cubic periodic box with 64 H atoms.
Electrostatics were computed using Ewald summation, and
EPauli was computed using the minimum image convention.
Thermodynamic parameters were averaged over 1 ps following
a 200 fs equilibration period, with the time step set to min (0.02,
1=

����
T
p

) fs. Masses were set to mnuc � melec � 1:008 amu; reduc-
ing the electron mass to mnuc � 0:5 amu and increasing the
nuclear mass by the same amount had a negligible effect on
the equations of state.
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From eFF dynamics, the average electron size increases
with temperature, from 1.74 bohr at 4200 K to 2.32 bohr at
33 000 K. At temperatures exceeding 
50 000 K, some
electrons begin to expand past the dimensions of the peri-
odic box, which we consider to represent ionization [21].
This suggests that at rs � 2 bohr, dissociation and ioniza-
tion occur in separate temperature ranges, 16 500 K and
50 000 K, respectively.

Figure 3 shows the pressure versus temperature of D2 at
rs � 2 bohr. Since no experimental data are available, we
compare eFF to equations of state from the most accurate
ab initio theories. Path integral Monte Carlo (PIMC) is in
principle exact but in practice the accuracy is limited by the
step size, which is inversely proportional to temperature.
PIMC predicts that the midpoint of molecular dissociation
occurs at 10 000 K; however it also predicts that dP=dT <
0 at this temperature, which initially [22] was taken as
evidence of a first-order phase transition. But later [6] this
result was concluded to be an unphysical artifact of the
simulation. Thus currently PIMC can capture accurately
only the thermodynamics of higher temperature dissoci-
ated states [6]. At lower temperatures (<10 000 K), we
compare our results against the Saumon-Chabrier EOS,
which used parameters fitted to describe the molecular
phase.

Thus eFF provides a unified and continuous description
of both the molecular and atomic regimes, including the
ionized regime above 50 000 K. It matches the pressures
from the Saumon-Chabrier EOS well at low temperatures,
and it matches the slope of PIMC computations [23] at
higher temperatures. At higher temperatures the eFF EOS
inflects slightly upward while the PIMC and chemical
models both inflect downward over the dissociation re-
gime. We believe that the upward inflection is physically

reasonable, since the doubling in the number of free par-
ticles resulting from dissociation should increase the pres-
sure. While eFF describes the dissociation of molecules
into atoms as the temperature increases, it does not show
the discontinuous first derivative in the equation of state
that would characterize a first-order plasma phase
transition.

The good agreement of eFF with PIMC persists to

100 000 K, above which point the eFF EOS slope be-
comes too small, with the pressure becoming 20% too low
by 120 000 K. Thus the simple eFF, with no adjustable
parameters, provides a consistent description of hydrogen
over the 0 to 100 000 K temperature range.

Figure 4 shows the eFF computed pressure-density rela-
tion (Hugoniot curve) of shocked liquid deuterium, where
deuterium is heated from 20 K to tens of thousands of
degrees within tens of nanoseconds. The single-shock
Hugoniot curve for liquid deuterium is by now well estab-
lished, with experimental data from diverse shock sources
such as gas guns [24], exploding wires (Z machine [25]),
and imploding hemispheres (convergent geometry [26]), as
well as theoretical results from PIMC in impressive accord
with each other. These data support a curve that sharply
inflects upward at a maximum compressibility of �=�0 

4, consistent with the limiting compressibility of other
diatomics such as CO and N2 [27]. The redundant experi-
ments were spurred by controversy over an anomalously

Linear mixing 
eq. of state

Path integral
Monte Carlo

Electron force field (points)

WPMD

FIG. 3 (color). Equation of state for liquid deuterium at rs �
2 bohr with varying temperature. We show here that eFF is
applicable and consistent with the best theory over the entire
temperature range shown. The eFF results (black round points)
are in the range with the best QM (PIMC, green solid and dashed
lines) above 10 000 K (where PIMC is accurate), and eFF agrees
well with the Saumon-Chabrier EOS [20] below 10 000 K
(where it is expected to be accurate). The PIMC results shown
here are: (a) calculations using free-particle nodes (dashed line
[22]), and (b) calculations using antisymmetrized local Gaussian
nodes (solid line, open squares [29] and closed squares [23]).
Above T > 50 000 K the eFF uses a harmonic restraint to limit
the electron size (E � 1

2 kss
2 for s > Lbox=2); however, the

equation of state is insensitive to the particular value of ks, as
long as it keeps the electrons bound. The eFF pressures from
ks � 1 and from 10 hartrees=bohr2 are within 1% of each other
over T � 6000 to 600 000 K.

9100 K 

15 400 K

30 720 K 

FIG. 2 (color online). Proton-proton pair distribution function
for liquid D2 for rs � 2 bohr and varying temperature. We show
here that eFF predicts a gradual dissociation of molecules into
separated atoms as the temperature increases from T �
10 000 K to 20 000 K. The inset shows the ratio of the amplitude
at the first minimum (gmin) to the amplitude at the first maximum
(gmax), indicating that the midpoint is at 16 500 K. The dynamics
parameters were the same as in Fig. 1.
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large compressibility �=�0 � 6� 1:8 observed using laser
ablation as a shock source (Nova laser [28]). The latest
convergent geometry experiments have the smallest error
bars, and definitively support a maximum compressibility
of 4� 0:6.

The eFF Hugoniot passes through the gas gun and Z
machine data points, and shows a stiff upward bend, but
predicts a maximum compressibility of 4.8, which lies
slightly above the limits of 3.4 to 4.6 from the convergence
geometry experiments. Below 50 GPa, the eFF Hugoniot
curve leads pressures and temperatures that are slightly too
low (eFF P � 13 GPa, T � 2510 K at rs � 2:00 bohr ver-
sus gas gun P � 25 GPa, T � 4650 K at rs � 2:10 bohr),
but the upward slope matches experiment. Above 120 GPa,
the eFF Hugoniot curve bends upward to form a stiff curve
with a minimum and maximum �=�0 of 4.8 and 5.0. In this
pressure range, the PIMC Hugoniot curve is shaped like a
backward C, with a maximum �=�0 of 4.3 which decreases
to 4.1 at P � 5608 GPa (T � 106 K). Hence the eFF
Hugoniot curve has the correct overall shape, but the
maximum compressibility is slightly too high.

The encouraging results obtained with warm dense hy-
drogen, as well as the correct ground state geometries
obtained for molecules with elements from Z � 1–6, sug-
gest that eFF could be a valuable and general method for
studying the excited electron dynamics of systems with
diverse combinations of elements and bonding. The eFF

potential contains terms no more complex than those used
in traditional force fields involving only nuclei. Thus it
should be practical to use eFF to study large scale excited
systems beyond the reach of current quantum mechanics.
We anticipate further developments will be required for
applications to atoms beyond carbon.
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FIG. 4 (color). Shock Hugoniot curve for liquid D2. We show
here that eFF agrees well with most experiments: gas gun (red
dots), Z machine (green dots), and convergence geometry (or-
ange). The validity of the Nova laser data (blue dots) has been
questioned [27]. The PIMC results agree with eFF up to a
compression of 4.2, but leads to a lower limiting compression
than eFF. To compute the Hugoniot curve, we perform NVE
simulations of D2, interpolating to temperatures such that the
internal energy, volume, and pressure satisfy U� U0 �

1
2 �V �

V0��P� P0� � 0. As a starting point, we compute a box of
liquid hydrogen with rs � 3:16 bohr (�0 � 0:171 g=cm3), T �
19:6 K; we find U0 � �0:477 043 hartrees=atom and P � 0.
We note that the eFF Hugoniot curve connects to an eFF low
temperature starting point, while the PIMC Hugoniot curve
connects to a U0 from a separate calculation [30].
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