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Mixing-Induced Global Modes in Open Active Flow
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We describe how local mixing transforms a convectively unstable active field in an open flow into
absolutely unstable. Presenting the mixing region as one with a locally enhanced effective diffusion allows
us to find the linear transition point to an unstable global mode analytically. We derive the critical
exponent that characterizes weakly nonlinear regimes beyond the instability threshold and compare it with
numerical simulations of a full two-dimensional flow problem.
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In many natural and laboratory flows active chemical
and biological processes may occur. Examples include
chemical reactions in minimixers, plankton growth in
ocean, see, e.g., [1] and references therein. Quite often
this activity occurs in an open rather than in a closed
geometry. Here the main issue is whether the throughflow
is stronger or weaker than the activity. One has to compare
the velocity of the throughflow with the velocity of the
activity spreading due to diffusion. If the throughflow is
stronger, the activity is “blown away” like a candle flame
in a strong wind, in the opposite case a sustained activity
can be observed [2]. This simple picture is valid, however,
only for homogeneous media. Often additional vortexes
are superimposed on a constant throughflow, due to, e.g.,
wakes behind islands in ocean currents or mixing enforced
by revolving fan blades in laboratory experiments. We
want to study under which conditions such an additional
kinematic mixing in a strong open flow can lead to a
transition to a sustained activity, and to characterize this
transition quantitatively.

Our main model is a reaction-advection-diffusion equa-
tion for the dimensionless concentration of an active scalar
field u(r, )

u, +[V+ W(r, 1)) Vu = DyV?u + au(l — u?). (1)

Here V = (V, 0, 0) is a constant throughflow in x-direction,
D, is a molecular diffusion of the scalar field. Activity is
assumed to be of the simplest form: a linear growth with
rate a with a saturation at ¥ = 1. The nonlinearity index p
is typically integer (1 or 2) for chemical reactions, while
for biological populations a wide range of values of p has
been recently reported [3]. Mixing is described by a spa-
tially localized incompressible velocity field W(r, 1), its
intensity is denoted as W. Note that in the absence of fluid
flow Eq. (1) is reduced to the famous Kolmogorov-
Petrovsky-Piskunov-Fisher (KPPF) model of an active me-
dium with diffusion (see, e.g., [4] for original references,
analysis, and applications of KPPF), while for a =0
Eq. (1) describes a linear evolution of a passive scalar in
a flow. Model (1) can be used for the description of
biological activity, where u is, e.g., concentration of a
growing plankton, advected by oceanic currents; for a
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possible laboratory realization see recent experiments
with an autocatalytic reaction in a Hele-Shaw cell with a
throughflow [5].

In the absence of flow, the diffusion causes the active
state to spread forming eventually a front with velocity
V; = 2/aD, [6]. Thus, for vanishing mixing W = 0, the
activity is blown away provided V > V. For this parame-
ter range the instability in Eq. (1) is convective and in the
absence of external sources, no activity is observed in the
medium. A nontrivial state is, however, possible if there is
a localized source of the field u: then a growing tail
stretches from this source in the downstream direction,
where it eventually saturates at u = 1. The linearized
problem with a point (-function) source of intensity &
can be readily solved, yielding

u(x) = (V)" exp[xV/2Dglexp(—1xIV/2Dy),  (2)

u(r) = e(2mDy) ™" exp[xV/2DoIKo(Ir|V/2Do),  (3)

in one- and two-dimensional setups (where K, is the
modified Bessel function, V = (V2 — V%)U 2). Note that

in both solutions u ~ exp(ux) as x — oo, where u+ =
(Do) YV = V).

In this Letter we demonstrate, that beyond some critical
intensity W,,, a localized mixing W(r, 7) turns the convec-
tive instability locally into the absolute one, which results
in a stationary (in statistical sense) profile of u (see Fig. 1
for a sketch of the profile and Fig. 4 below for a numerical
example). Beyond criticality W > W, the mixing region
acts as an effective source of the field; in Fig. 1 this region
is denoted as a “‘source.” A “‘tail”” where the field grows
exponentially as in (2) and (3) extends downstream of the
source. Further downstream stretches the ‘““plateau” do-
main where ¥ = 1. Our main quantitative result, obtained
by matching solutions in these three domains, is the critical
exponent ( relating the intensity of the effective source
€. With the mixing intensity: . ~ (W — W,,)E.

To develop the theory we use the concept of global
modes [7]. In this concept a self-sustained nonadvected
pattern arises due to inhomogeneities of the system.
Typically, one considers inhomogeneities of the growth
rate a: if a = a(r) has a hump where locally the front
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FIG. 1. (a) Quasi-one-dimensional open flow with a localized
mixing zone. Panels (b) and (c) illustrate the construction of the
nonlinear global mode, they show qualitative profiles u(x) and
z2(x) =u~ "9 in the linear approximation at the criticality
(dashed line) and in nonlinear regime slightly beyond criticality
(full line). In the latter case the profile is nearly linear for x < x,
but deviates due to nonlinear terms for x > x,, see discussion of
Eq. (14). Regions source, tail, and plateau are explained in the
text.

velocity is large V}"C >V, then a global mode appears,
located at this hump and downstream. In this Letter we are
interested in another, mixing-based mechanism of a global
mode appearance. It can be easily understood if the con-
cept of effective diffusion (see, e.g., [8]) is used to describe
the mixing term in (1). In this approach, we phenomeno-
logically introduce effective diffusivity D(r)= D+
D.i (r) that accounts for the coarse grained mixing dy-
namics, and write instead of (1) an equation with a non-
homogeneous diffusion

u, + V-Vu =V[D(r)Vul + au(l — u”). 4

A hump of diffusivity D(r) leads to an increase of the local
front velocity V;, and one expects that when the front
propagation prevails over the throughflow, a stationary
global mode can appear, producing a mixing-induced sus-
tained structure. We focus on a geometry shown in
Fig. 1(a): in a constant open flow there is a localized region
of strong mixing, which, as we will see below, is not
necessarily chaotic or turbulent. The theory below will be
developed for a one-dimensional case, which is relevant,
e.g., for flows in a micropipe; the results will be supported
by numerical simulations of two-dimensional flows. We
restrict ourselves to this case because of computational
simplicity, and also because two-dimensional flows are
relevant for many geophysical and laboratory (especially
in microfluidics) experimental situations.

We start with a linear analysis of a one-dimensional
situation, described by the linearized at u = 0 Eq. (4):

au_'_Vau:i

ou
m o [D(x)a} + au. %)

with an ansatz u(x, ) ~ exp[At + [* z(£)d£] obtain

dz _ _, V— dg—)((x) a—A
— = -z + — .
dx D(x) D(x)

As |x| — co we have a homogeneous medium with D =

(6)

Dy; here the solution should tend to values z% =
(2Dy) " (V = /V?> —4(a — A)Dy) at which the right-
hand side of (6) vanishes. More precisely, as x — —o0
we have z— 7% and as x — o we have z — z*. With
these two boundary conditions one easily finds the solution
of (6) numerically, matching at z = 0 integrations starting
at large |x| from the values z%. In a particular analytically
solvable case of a piecewise-constant diffusivity: D = D,
for |x| > 1 and D = D, > D, for |x| < [, one can perform
the integration analytically and obtain the equation for the
growth rate A:

l

(N

2D, \/vz —4(a — A)D,
= arctan 5
Jaa =)D, — V2 4a—ND; —V
The value A = 0 corresponds to the onset of global insta-

bility, in this case (7) gives the relation between the critical
values [, and D,:

2D Vi -V;
I, =——1  arctan 4% €))
V4aD . — V? 4aDy =V

From (8) it follows that D, — 0 as I, — I, = V/(2a).
In other words, there exists a minimal size of the mixing
region, so that for / <[, even a very strong mixing, with
a very large effective diffusion, cannot create a global
mode (the same is true for a smooth profile of D(x); note
also that the size of the mixing region is not limited from
above). This is in contrast to the situation when the global
mode is induced by a local hump of the growth rate a
(cf. [9]): here one can obtain instability even when a(x) is
highly localized (a delta function), a global mode then
looks as in (2) and (3). A similar analysis performed for
a two-dimensional inhomogeneous version of Eq. (5) also
yields a minimal radius of a diffusive spot that can lead to
instability.

Next we discuss the linear stability not in the framework
of the effective diffusion model (4), but in the full reaction-
advection-diffusion problem as in Eq. (1). After the linea-
rization we arrive at a linear stability problem

u, + (V+ W, 1) - Vu = DyV?u + au, 9

which is nonstationary if the velocity field W is time
dependent. Then the proper way to determine the stability
is to calculate the largest Lyapunov exponent (LE) A =
(4 In|[ul|). This can be done numerically, as described in
Ref. [10]. Noteworthy in this consideration we are not
restricted to a deterministic flow, as the LE can be calcu-
lated also for a randomly or chaotically time-dependent
field W(r, ¢).
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We have calculated the LE for a linearized two-
dimensional reaction-advection-diffusion Eq. (9) subject
to a constant open flow with a superimposed oscillating
vortex, described by the stream function

W(x,y) = Vy + Wexp[—(x? + y*)R %] cos(wt). (10)

We fixed V=1, R = 1 and w = 2, and calculated the LE
A for different molecular diffusion constants D, and vortex
intensities W (Fig. 2). Note that the parameter a simply
shifts the LE, therefore we plot A — Ay, where Ay = a —
V?/(4D,) is the LE for a nonmixed flow. One can see that
the mixing-induced enhancement of field growth is mostly
pronounced for small diffusion and is maximal at W = 3.
This is the mixing strength at which a chaotic saddle [1] in
the Lagrangean particle trajectories appears. A further
increase of the vortex intensity does not lead, however, to
a significant growth of the LE.

Now we develop a nonlinear theory of the global mode.
It is clear that the nonlinear saturation stops the exponential
growth of a slightly supercritical linear mode and leads to a
nonlinear solution with a finite amplitude. Our aim is to
describe the dependence of this amplitude on the deviation
from criticality. First we notice that the very notion of the
amplitude is here nontrivial. Indeed, the nonlinear solution
looks as in Fig. 1(b) (cf. Fig. 4, below); it saturates tou = 1
in the downstream direction. However, outside the mixing
region the field looks like a solution caused by a localized
field source. Thus, we can take the effective intensity of
this source &, which is proportional to the characteristic
field amplitude in the mixing region u(0) [see relations (2)
and (3)], as the order parameter of the transition. The
deviation from the criticality we will measure with the
growth rate A, for which holds A « W — W, in the full
model (1) or A & D — D, in model (4).

We will consider the simplest possible setup, namely, the
nonlinear modification of one-dimensional Eq. (5):

au_i_vﬁu:i

ou
” o [D(x)a} + au(l — u”). (11)

We look for a stationary global mode u(x), and rewrite this
equation as the system

A—- Ay

0
0.05

FIG. 2 (color online). Lyapunov exponent characterizing
stability of the global mode mixed by periodically blinking
vortex (10). A similar picture holds for a stationary vortex.

dD(x)
dz 2 VT a
=2y, 12
P p ° b p" (12)
du
— = zu. 13
o (13)

We consider this system separately in two spatial domains.
The first, linear region, includes the inflow and the mixing
domains (“‘source” in Fig. 1): —oo < x < x,, where the
field u(x) remains small. In the second, outflow region x, <
x < oo, the field u further grows (tail) and nonlinearly
saturates (plateau). In the linear region, because of small-
ness of the field, we can neglect u” in (12), thus we obtain
an equation similar to (6). The only difference is that
because we look for a stationary solution, in (12) the
term ~ A is absent. Near the criticality, where A is small,
we can consider this term as a perturbation, therefore the
solution of (12) in the linear region is close to the solution
of Eq. (6); it has the asymptotic z — w, as x — —oo,
Because of the perturbation term = A, at the right border
of the linear region z deviates from w_: the deviation
s — z(x,) is proportional to A, and, thus, to D — D,,.
At x, the field u is small and u(x,) « u(0).

Next we consider full equations (12) and (13) in the
nonlinear region x > x,. Here the solution should tend as
x — oo to the saddle fixed point u = 1, z = 0. Thus, start-
ing integration from large values of x in the negative
direction, we have to follow the stable manifold of this
saddle and match this solution at x = x, with the obtained
above. Because the value to be matched z(x,) is very close
to w_, in the region where the solution (z, 1) approaches
[z(x,), u(x,)] we can write z> = u2 — 2u_Az to obtain

4

(kAz=(u+—;LJAz—%uﬂmkm““*% (14)

Here, since Az = u_ — z(x) is small, we have approxi-
mated the solution of (13) as u = u(x,)e*-*~*) Because
linear inhomogeneous Eq. (14) is solved in the negative in
the x direction, the solution follows the slowest exponent:
Az = exp[y(x — x,)], where y = min(n+ — -, pu—).

At the criticality, the region of validity of the exponential
solution Az o« exp[y(x — x,)] becomes very large. Thus it
is dominant for small deviations from criticality A; there-
fore, we can estimate the coordinate x, at which the field u
saturates (i.e., we reach the state # = 1 and z = 0) from the
relations above: from —u_ =~ [z(x,) — u_Je?™ =) it fol-
lows (x; —x,) = —y 'In[u_ — z(x,)]. Substituting this
in the expression for u(x), we obtain u(x,) < [pu_ —
z(x,)]*-/7. Now we take into account that u_ — z(x,)
D — D, and, because the evolution of u in the interval
0 <x < x, only weakly depends on the criticality, .4 =
u(0) « u(x,). The final expression for the scaling law of the
amplitude of the global mode thus reads

_ — 1
o AP, =i:m%JL<§.M)
Y My = - P

Eeff
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FIG. 3 (color online).

The critical exponent S calculated for
the model (1) (symbols), compared with theoretical prediction
(16) (lines). One can clearly see the crossover between two
regimes of the field saturation in dependence on parameter a,

the latter is related to v in (16) via v ~ a~1/2,

The critical index 8 depends only on the nonlinearity index
p and on the dimensionless velocity v = V/V/:

p! if v>-_2te
2./1+p
Poydil g cye 2 (16)
22 -1 2/1+p"

This main result of our Letter can be physically interpreted
as follows. The exponent S is determined solely by the
nonlinearity index p if the throughflow velocity is much
larger than the front velocity (v large). Here the field in the
plateau domain (see Fig. 1) is effectively uncoupled from
the source, and the saturation of the instability is due to the
local nonlinearity at the source. For a small throughflow
velocity (v close to 1) the plateau state interacts with the
source via the tail. Because of this ‘“‘remote control,” the
field at the source is saturated more efficiently than due to
nonlinearity, here the exponent S is determined solely by
the form of the tail, which depends on the velocities ratio v.

Below we check formula (16) with direct numerical
simulations of model (1). A stationary vortex (10) with
w =0 and R = 1 was imposed on a constant flow with
V = 1. Keeping the diffusion constant fixed D, = 0.3, for
different field growth rates a we have found, from the
linearized equations, the critical vortex intensities W, at
which the global mode becomes first unstable. Then we
solved full nonlinear equations close to criticality and
found the exponent B according to (15). The stationary
problem was solved with a finite difference method in a
domain 0 = x = 60, 0 = y = 40 with periodic boundary
conditions in y and conditions u(0) = 0, 2£(60) = 0. The
results are presented in Fig. 3; they are in very good
agreement with the theoretical prediction (15) and (16).
Figure 4 shows the example of the stationary mode appear-
ing beyond the instability threshold.

In summary, we have described the mixing-induced
transition from a convectively unstable active field in an
open flow to a persistent global mode. Our theoretical

FIG. 4 (color online). The active field behind a vortex with
W =4 placed at x=y =0, for V=1, a =0.5, Dy =0.3,
p=2.

approach bases on the representation of the mixing region
as a domain with locally enhanced effective diffusion. For
a nonlinear regime close to criticality we have derived the
critical exponent B (16) that depends only on two parame-
ters of the system: the dimensionless flow velocity v
normalized by that of the front, and the nonlinearity index
p. For large velocities the critical exponent depends only
on the system’s nonlinearity, which means a local in space
saturation of the instability. For small velocities the expo-
nent is a function of velocity, here the growing downstream
tail of the active field imposes the saturation. Notably, this
prediction of the one-dimensional theory is in a good
accordance with two-dimensional calculations.
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