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Electromagnetic Wormholes and Virtual Magnetic Monopoles from Metamaterials
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We describe new configurations of electromagnetic (EM) material parameters, the electric permittivity
€ and magnetic permeability u, which allow one to construct devices that function as invisible tunnels.
These allow EM wave propagation between the regions at the two ends of a tunnel, but the tunnels
themselves and the regions they enclose are not detectable to lateral EM observations. Such devices act as
wormholes with respect to Maxwell’s equations and effectively change the topology of space vis-a-vis EM
wave propagation. We suggest several applications, including devices behaving as virtual magnetic
monopoles, invisible cables, and scopes for MRI-assisted surgery.
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Introduction.—New custom designed electromagnetic
(EM) media, or metamaterials, have inspired plans to
create cloaking, or invisibility, devices that would render
objects located within invisible to observation by exterior
measurements of EM waves [1-5]. Such a device is theo-
retically described by means of an “invisibility coating,”
consisting of a medium whose EM material parameters
(the electric permittivity € and magnetic permeability wu)
are designed to manipulate EM waves in a way that is not
encountered in nature. Experimentally, cloaking has now
been implemented with respect to microwaves in [6], with
the invisibility coating consisting of metamaterials fabri-
cated and assembled to approximate the desired ideal fields
€ and p at 8.5 GHz. Mathematically, these constructions
have their origin in singular changes of coordinates; similar
analysis in the context of electrostatics (or its mathematical
equivalent) is already in [7-11]. Versions for elasticity are
in [12,13].

Potential applications of the cloaking constructions are
limited by the lack of interaction between objects and EM
waves in the cloaked region and those in the exterior
region. It would be desirable to allow some limited inter-
action, with the nature and quantity controlled by design
parameters. In this Letter, we show that more elaborate
geometric ideas than those in cloaking enable the construc-
tion of devices, i.e., the specification of ideal € and w, that
function as EM wormbholes, allowing the passage of waves
between possibly distant regions while most of the region
of propagation remains invisible. At a noncloaking fre-
quency, the resulting construction appears (roughly) as a
solid cylinder, but at cloaking frequencies, i.e., k for which
€ and u are effective, the wormhole device has the effect of
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changing the topology of space. EM waves propagate as if
R3 has a handlebody attached to it (see 2-dimensional
schematic in Fig. 1). Any object inside the handlebody is
only visible to waves which enter from either of the ends;
conversely, EM waves propagating inside the wormhole,
say from a source, can only leave through the ends. Thus,
for example, a magnetic dipole situated near one end of the
wormhole would appear to an external observer as a mag-
netic monopole. Already on the level of ray-tracing, the
wormhole construction gives rise to interesting effects
(Fig. 2). We conclude by describing other possible appli-
cations of wormhole devices. A detailed analysis of worm-
holes is given elsewhere [14].

Background. —Mathematically, most of the cloaking
constructions mentioned above have their origins in a
singular transformation of space in which an infinitesi-
mally small hole has been stretched to a ball (the boundary
of which is the cloaking surface). An object can then be

FIG. 1 (color). Schematic figure: a wormhole manifold is
glued from two components, the ‘“‘handle” and space with two
holes. In the actual construction, components are 3-dimensional.
Red curves on M, M,, and M are vy, y,, and 7, respectively.
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FIG. 2 (color).

Ray-tracing simulations of views through the
bores of two wormholes. The distant ends are above an infinite
chess board under a blue sky. On left, L < 1; on right, L = 1.
Note that the blue is used for clarity; the wormhole construction
should be considered essentially monochromatic.

inserted inside the hole so created and made invisible to
external observations. We call this process blowing up a
point. The cloaking effect of such singular transformations
was justified in [1,2] both on the level of the chain rule on
the exterior of the cloaked region, where the transforma-
tion is smooth, as well as on the level of ray-tracing in the
exterior.

However, due to the singular nature of the resulting EM
parameters, to fully justify this construction, one needs to
study physically meaningful solutions of the resulting
(degenerate) Maxwell’s equations on all of space, includ-
ing the cloaked region and particularly at the cloaking
surface itself. These are waves that are both finite energy
and distributional solutions, i.e., that satisfy Maxwell in an
appropriate weak sense.

This was carried out in [5], and it was shown that the
original cloaking constructions in dimension 3 are indeed
valid; furthermore, EM active objects (those with nontri-
vial internal currents) may be cloaked as well, if the in-
terior of the cloaking surface is appropriately lined. Al-
though the analysis works at all frequencies k, the cloaking
effect should be considered as essentially monochromatic,
or at best narrow band, using current technology, since the
metamaterials needed to physically implement these ideal
constructions are subject to significant dispersion [2].
These same considerations hold for the wormhole con-
structions described here.

The wormhole manifold M.—First, we explain what we
mean by a wormhole. The concept is familiar from cos-
mology [15], but here we use the term to denote a speci-
fication of € and w giving rise to certain effects. We start by
describing the abstraction of this process on the level of
what we call the wormhole manifold and then explain how
this can be effectively realized vis-a-vis EM wave propa-
gation by giving EM parameter fields € and u in a region
N C R3, the wormhole device. Together, these can be
considered as ‘‘blowing up a curve,” rather than the “‘blow-
ing up a point” used in cloaking. Employing metamateri-
als, it should be possible to physically construct a device
having EM parameters at least approximating the ideal

wormhole and thereby experimentally produce the effects
that we describe.

Let us start by making two holes in the Euclidian space
R3, say by removing the open unit balls B~ and BY,
separated by some positive distance. Denote by M; the
region so obtained, M; = R>\ (B~ U B™). Note that M, is
a 3-dimensional manifold with boundary, the boundary of
M, being dM, = 9B~ U dB™, disjoint union of a pair of
two spheres, which can be considered as S U S?, where
we will use S? to denote various copies of the two-
dimensional unit sphere. The two closest points of 9B~
and 0B*, P~ and P™, can be identified with the north pole
of each sphere, NP € S?.

The second component of M is a 3-dimensional cylinder,
M, = S? X [0, L], that is, the product of sphere and an
interval [0, L] C R. As the boundaries of M, and M, are
topologically the same, we can glue their boundaries to-
gether. The resulting domain M no longer lies in R?, but
rather has the topology of Euclidian space with a
3-dimensional handle attached. M is in fact a three dimen-
sional manifold (without boundary) that is the connected
sum of the components M; and M, (Fig. 1). On M, we use
the Riemannian metric g that is the Euclidian metric on M,
and the product metric on M,.

To consider Maxwell’s equations, we start with
Maxwell’s equations on R? at frequency k € R,

VXE=ikB, VXH=—ikD, D=¢E B=uH.
(D

Here, € and p are matrices corresponding to permittivity
and permeability. Considering E and H as 1-forms and D
and B as 2-forms, and using the exterior derivative d,
Maxwell’s equations can be written in coordinate invariant
form as

dE =ikB, dH = —ikD, D=¢€E, B= uH, (2)
where & and w are linear operators mapping 1-forms to
2-forms [16]. We define Maxwell’s equations on the mani-
fold M as equations (2) with € and w acting via the Hodge
operator of (M, g) [16,17].

Construction of the wormhole device N in R?>.—We next
explain how to build a “device” N in R® which affects the
propagation of electromagnetic waves in the same way as
the presence of the handle M, in the wormhole manifold
M. We emphasize that we are not actually tearing and glu-
ing space, but instead prescribing EM parameter fields
(which can be physically realized using metamaterials),
which make the EM waves in R? behave as if they were
propagating on the wormhole manifold M. In other words,
as far as EM observations of the wormhole device are
concerned, it appears as if the topology of space has been
changed.

For simplicity, we construct a device that has rotational
symmetry about a line in R3. We use cylindrical co-
ordinates (6, r, z) corresponding to a point (rcosé,
rsind, z) in R?. The wormhole device is built around an
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FIG. 3 (color). Obstacle K and light rays going around the
wormhole. The exterior N of K consists of two components; the
bore N, of the wormhole device, and the outside N;.

obstacle K C R3. To define K, let S be the two-
dimensional finite cylinder {# € [0,27], r =2,0=z =<
s} C R3. The closed region K is a tubular neighborhood
of S and has the shape of a thickened cylinder with
smoothed edges; see Figs. 3 and 4.

Using coordinate invariance of Maxwell’s equations, we
prove that there is a 1 — 1 correspondence between the
solutions of Maxwell’s equations on M and N = R*\ K
when the material parameters on N are chosen appropri-
ately. To describe those, let us consider a curve vy that is the
union of geodesic paths y, and vy, that connect points P*
and P~ in M, and M,, respectively; see the red curves in
Fig. 1. Then, there exists a diffeomorphism F mapping M \
v to N. To describe F, we use stereographic projection and
a stretching in the z-coordinate to map M, \ y, = (S§*\
{NP}) X[0,L] onto N, ={r <1,0 < z < s} that is the
product of a 2-dimensional disc and an interval [0, s] and
forms the bore of the wormhole. Here, L, s represent
design parameters. The other component M; \ y; can be
mapped to N; = N\ N, so that the #-coordinate is pre-
served; we may further assume that this map is the identity
far from the wormhole. The cross-section at § = 0 of
F: M, \ v, — N, is shown in Fig. 5. Note that F blows
up a neighborhood of y to a neighborhood of dK.

Maxwell’s equations are invariant under smooth
changes of coordinates. This means that any solution to
Maxwell’s equations on M \ y endowed with material
parameters &, u becomes, after transformation by F, a
solution to Maxwell’s equations on N  with
F-transformed material parameters &, [, and vice versa.
These correspond to an inhomogeneous, anisotropic me-
dium that becomes singular as one approaches 2, = K.

Next, consider the (light) rays in M and in the exterior of
the obstacle, N = R? \ K. The rays on M are transformed
by F into the rays in N. As almost all the rays on M do not
intersect with vy, therefore, almost all the rays on N do not
approach 2. This was the basis for [1,2] and was analyzed
further in [3]; see also [12] for a similar analysis in the
context of elasticity. Thus, heuristically, one is led to
conclude that the electromagnetic waves on (M; g, u) do
not feel the presence of y, while those on (N; &, @) do not
feel the presence of K, and these waves are transformed
into each other by the map F.

FIG. 4 (color). A typical light ray traversing the bore of the
wormhole when L >> 1. The upper part of K is not shown.

However, when considering the fields on the entire
spaces M and N, neither the chain rule nor the ray-tracing
analysis is adequate, due to the singularities of & and i
near 2. The significance of this for cloaking has been
analyzed in [5]. In the above construction, we removed a
one-dimensional curve vy from the manifold M. Removing
v is analogous to making a one-dimensional crack that
does not affect the EM fields. A careful analysis shows that
the physically relevant class of waves, namely those that
are locally finite energy and distributional solutions to
Maxwell’s equations on (M; &, w) and (N; &, fi), corre-
spond perfectly under the transformation F. To guarantee
that the fields in N with singular material parameters & and
A are finite energy solutions and do not blow up near 3,
one must impose at 3 the appropriate boundary condition,
namely, the Soft-and-Hard (SH) condition, (see [18,19])

69'E|2=0, 69'H|2=0, (3)
where e, is the unit vector field in the angular direction.

Combining these steps, we see that external measure-
ments of the electromagnetic fields on (M; &, ) and on
(R3 \ K; &, ii) coincide. In other words, if we externally
apply any EM wave and measure the radiating electromag-
netic field it generates, then the field on the wormhole
manifold (M; e, p) coincides with the field on the worm-
hole device (R*\ K; &, fi).

Summarizing our constructions, the wormhole device
consists of the ideal metamaterial coating of the obstacle
K. This coating should have the permittivity & and perme-
ability f. In addition, one should impose the SH boundary
condition on 2, which may be realized by making the
obstacle K from a perfectly conducting material with
parallel corrugations on its surface [18,19].

When the “length” of the wormhole is small, L < 1,
the wormhole device results in an optical effect so that rays
traversing the bore N, of the wormhole are acted on as by a
fisheye lens, or a mirror ball with the image in the mirror

A B C D A D

FIG. 5 (color). The map F from M to N, in (r, z)-coordinates.
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being from the other end of the wormhole; for L = 1,
further distortion and multiple images occur (Fig. 2).

For some potential applications, it is desirable to allow
for a solid cylinder around the axis of the wormhole to
consist of a vacuum or air, and it is possible to provide for
that using a slightly different construction than was de-
scribed above, starting with flattened spheres [14].

The proposed ideal material parameters &, u have, in
cylindrical coordinates near dK, the same rotational sym-
metry as those used in [3] to theoretically cloak an infinite
cylinder, see [14]. Thus, the metamaterial construction
using concentric rings of split-ring resonators used for
the experimental realization in [6] could be modified for
an implementation of the wormhole device at a microwave
frequency. We note that physical materials are always
approximations of the ideal material parameters &, w.
The effect on cloaking of using &, u with materials having
an anisotropy of limited magnitude has been studied in
[20,21], and similar analysis for the wormhole construction
would be desirable.

Applications.—Finally, we consider applications of
wormbhole devices. The current rapid development of meta-
materials designed for microwave and optical frequencies
[6,22,23] indicates the potential for physical applications
of the wormhole construction, which are numerous:

Optical cables.—A wormhole device functions as an
invisible optical tunnel or cable. In particular, a wormhole
device, considered as an invisible tunnel, could be useful in
making measurements of electromagnetic fields without
disturbing those fields; these tunnels do not radiate energy
to the exterior except from their ends.

Virtual magnetic monopoles.—Consider a very long
invisible tunnel. Assume that one end of the tunnel is
located in a region where a magnetic field enters the
wormhole. Then, the other end of the tunnel behaves like
a magnetic monopole, see [24].

Optical computers.—Wormbholes could be used in opti-
cal computers. For instance, active components could be
located inside wormhole devices having only visible “ex-
its” for input and output.

3D video displays.—Divide a cube in R*to N X N X N
voxels (three dimensional pixels) and put an end of an
invisible tunnel into each voxel. Assume that the end of
each tunnel is much smaller than the voxel so that from the
exterior of the cube, all ends of the invisible tunnels are
directly visible along any line that does not intersect the
other ends of the wormholes. Then, by inserting light from
the other ends of these N3 invisible tunnels, one could
direct light separately to each of the voxels. This creates
a device acting as a “‘three dimensional video display.”

Scopes for MRI devices.—We can modify construction
of M, and M, by deforming the sphere S so that it is flat
near the south pole SP and the north pole NP and making
the tube M, longer. This then allows the permittivity & and
permeability 4 in N to be constant near the z-axis. This
means that inside the wormhole, there could be vacuum or
air. Thus, for instance, in Magnetic Resonance Imaging

(MRI), we could use a wormhole to build a tunnel that
would not disturb the homogeneous magnetic field needed
for the imaging. Through such a tunnel, or “scope,” mag-
netic metals and other materials or components can be
transported to the imaged area without disturbing the
fields. Such tunnels could be useful in medical operations
using simultaneous MRI imaging.

Wormholes for beam collimation.—Consider a worm-
hole with a warped product metric on M,, i.e., that at a
point, (y, u) € S? X [0, 1] is the product of the standard
metric of sphere Sf(u) of radius r(u) and dz. Making r(u)

very small in the middle of the wormhole, only the rays that
travel almost parallel to the axis of the wormhole can pass
through it.

A.G. and G. U. are supported by US NSF, M. L. by the
Academy of Finland.

*Authors are in alphabetical order.

[1] U. Leonhardt, Science 312, 1777 (2006).

[2] J.B. Pendry, D. Schurig, and D.R. Smith, Science 312,
1780 (2006).

[3] J.B.Pendry, D. Schurig, and D. R. Smith, Opt. Express 14,
9794 (2006).

[4] U. Leonhardt and T. Philbin, New J. Phys. 8, 247 (2006).

[5] A. Greenleaf et al., Commun. Math. Phys. 275, 749
(2007).

[6] D. Schurig et al., Science 314, 977 (2006).

[71 M. Lassas et al., Commun. Anal. Geom. 11, No. 2, 207
(2003).

[8] A. Greenleaf, M. Lassas, and G. Uhlmann, Physiol. Meas.
24, 413 (2003).

[9] A. Greenleaf, et al., Math. Res. Lett. 10, 685 (2003).

[10] A. Greenleaf, M. Lassas, and G. Uhlmann, Commun. Pure
Appl. Math. 56, 328 (2003).

[11] G. Milton and N.-A. Nicorovici, Proc. R. Soc. A 462, 3027
(2006).

[12] G. Milton, M. Briane, and J. Willis, New J. Phys. 8, 248
(2006).

[13] S. Cummer and D. Schurig, New J. Phys. 9, 45 (2007).

[14] A. Greenleaf et al., arXiv:0704.0914.

[15] S. Hawking and G. Ellis, The Large Scale Structure of
Space-Time (Cambridge University Press, Cambridge,
England, 1973).

[16] A. Bossavit, Electromagnétisme, en Vue de la
Modelisation (Springer-Verlag, Berlin, 1993).

[17] Y. Kurylev et al., J. Math. Pures Appl. 86, 237 (2006).

[18] I. Hénninen, I. Lindell, and A. Sihvola, Prog.
Electromagn. Res. PIER-64, 317 (2006).

[19] P.S. Kildal, IEEE Trans. Antennas Propag. 38, 1537
(1990).

[20] Z. Ruan et al., arXiv:0704.1183 [Phys. Rev. Lett. (to be
published)].

[21] A. Greenleaf ef al., Opt. Express 15, 12717 (2007).

[22] C. Soukoulis et al., Science 315, 47 (2007).

[23] W. Cai et al., Nat. Photon. 1, 224 (2007).

[24] T. Frankel, The Geometry of Physics (Cambridge
University Press, Cambridge, England, 1997).

183901-4



