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General relativity predicts the gravitational wave signatures of coalescing binary black holes. Explicit
waveform predictions for such systems, required for optimal analysis of observational data, have so far
been achieved primarily using the post-Newtonian (PN) approximation. The quality of this treatment is
unclear, however, for the important late-inspiral portion. We derive late-inspiral waveforms via a
complementary approach, direct numerical simulation of Einstein’s equations. We compare waveform
phasing from simulations of the last �14 cycles of gravitational radiation from equal-mass, nonspinning
black holes with the corresponding 2.5PN, 3PN, and 3.5PN orbital phasing. We find phasing agreement
consistent with internal error estimates for either approach, suggesting that PN waveforms for this system
are effective until the last orbit prior to final merger.
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Compact astrophysical binaries spiral together due to the
emission of gravitational radiation. Calculating the dynam-
ics of these systems, and the corresponding gravitational
waveforms, has been a central problem in general relativity
for several decades. With first-generation interferometers
such as LIGO, VIRGO, and GEO600 now operating, and
development moving forward on the space-based LISA
mission, accurate and reliable waveforms are urgently
needed for gravitational-wave data analysis.

Post-Newtonian (PN) methods, based on expansions in
the parameter �� v=c, have been the major analytic tool
used to calculate the system dynamics and waveforms
during the early part of the inspiral, when the binary
components are relatively widely separated and thus have
a small orbital frequency [1]. Currently, gravitational-wave
data analysis for binary inspiral relies on waveforms de-
rived from PN methods [2]. The current predicted orbital
phase is available up toO��7�, which is referred to as 3.5PN
order. However, the convergence properties of the PN
sequence are not well understood, and it is not yet clear
how well PN predictions work late in the inspiral when
frequencies are high.

Numerical relativity, in which the full set of Einstein’s
equations is solved on a computer, is needed to handle the
final stages of the binary evolution, when the components
inspiral rapidly and merge. Recently, there has been dra-
matic progress in the use of numerical relativity to simulate
the final inspiral and merger of black holes [3–11]. These
breakthroughs have allowed numerical simulations with
increasingly wider initial separations, producing longer
wave trains. Linking such simulations with the PN calcu-
lations and comparing their waveforms in the late-inspiral
regime is a pressing concern of gravitational-wave data
analysis. While qualitative comparisons have suggested
that the two methods agree fairly well until shortly before
the merger [7,11], our group has found that even inaccurate

waveforms may approximately agree over several cycles.
Quantifying the level of agreement unambiguously re-
quires long, accurate simulations with very low eccentric-
ity, and careful analysis.

We have carried out suitable numerical simulations of a
merging equal-mass, nonspinning black-hole binary. The
black holes start on nearly circular orbiting trajectories
�1200M before merger, where M refers to the mass
that the system would have had when the black holes
were still far apart, before radiative losses were significant.
M is related to time by M � 5� 10�6 s�M=M��. In this
Letter, we quantitatively compare crucial phasing informa-
tion in our numerical simulation waveforms with phasing
in PN waveforms, finding striking agreement.

The numerical simulations were performed using the
moving puncture method [4,5,12]. We use fourth-order
Runge-Kutta time integration, fourth-order-accurate finite
spatial differencing, and second-order-accurate initial data.
Adaptive mesh refinement is used to resolve both the
dynamics near the black holes and the propagation of the
gravitational waves [7]. The wave extraction sphere was of
radius 60M and the cubical outer boundary was of half-
width 1536M; more details about this simulation can be
found in Ref. [13]. We performed physically equivalent
runs at three different maximum resolutions: low (3M=64),
medium (3M=80), and high (M=32). We find fourth-order
convergence of the Hamiltonian constraint, and better than
second-order convergence of the momentum constraints
during the runs.

The simulations begin at an angular gravitational-
wave frequency !� 0:051M�1. The frequency then
sweeps upward through roughly an order of magnitude
while the black holes undergo �7 orbits, producing �14
gravitational-wave cycles before merger. For such long-
lasting simulations, the primary consideration in providing
a realistic initial data model is to set up the orbiting black
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holes with minimal eccentricity, as gravitating binary sys-
tems of comparable-mass objects are expected to circular-
ize rapidly through the emission of gravitational radiation.
We have selected an initial black-hole configuration with
the relatively low eccentricity of less than 1%, as measured
below.

Figure 1 shows the gravitational-wave strain generated
by our highest-resolution numerical run and that predicted
by the PN approximation with 3.5PN phasing [14,15] and
2.5PN (beyond leading order) amplitude accuracy [16].
The waves are based on the dominant l � 2, m � 2 spin-
weighted spherical harmonic of the radiation, and repre-
sent an observation made on the system’s equatorial plane,
where only one polarization component contributes to the
measured strain. The initial phase and time of the waves
have been adjusted so that the frequency and phase for each
waveform agree at a point, t � �1000M, that is early in
the simulation, but after transient effects from the initial
data have subsided. We will quantify the phase agreement
below using the frequency domain, so that the time shift-
ing, done for illustrative purposes in Fig. 1, will have no
impact on the subsequent analysis.

To conduct comparisons with PN calculations, we need
to extract an instantaneous gauge-invariant polarization
phase � and angular frequency ! from our simulations.
These are derived from the gravitational-wave strain’s first
time derivative, which is a robust quantity in the numerical
data. This frequency corresponds to the sweep rate of the
polarization angle of the circularly polarized gravitational
wave that can be observed on the system’s rotation axis.

We define eccentricity as a deviation from an underlying
smooth, secular trend. We obtain a monotonic ‘‘secular’’
frequency-time relation by modeling the waveform angular
frequency ! as a fourth-order monotonic polynomial

!c�t�, plus an eccentric modulation of the form d!�t� �
!�t� �!c�t� � A sin	��t�
, where ��t� is a quadratic
function of time. Fitting this equation to our data yields
A � 8��1� � 10�4M�1. For Keplerian systems, con-
served angular momentum is proportional to r2!, so the
eccentricity corresponds to half the fractional amplitude of
the frequency modulation: e � A=�2!�. In our case the
eccentricity starts near 0.008, decreasing by a factor of 3 by
the time !cM� 0:15. We will compare our simulation
with noneccentric PN calculations, with the expectation
that small eccentricities have a minimal effect on the
important underlying secular trend in the rate at which
frequency sweeps up approaching merger.

The phasing of the waveform is critical for gravitational-
wave observation. For data analysis, the optimal methods
for both detection and parameter estimation rely on
matched filtering, which employs a weighted inner product
that can be expressed in Fourier space as hh; si �R
df	~h��f�~s�f�  ~h�f�~s��f�
=Sn�f�, where h is the tem-

plate being used, s is the signal being analyzed, and Sn is
the one-sided power spectral density of the detector’s noise
[17]. A template that maximizes hh; si will provide an
optimal filter. Therefore, the most crucial factor is the
relative phasing of the template and signal. The inner
product will cease to accumulate in sweeping through
frequency if the template and the signal evolve to be out
of phase with each other by more than a half-cycle, de-
creasing the effectiveness of the procedure.

Our key objective is to compare phasing between nu-
merical and PN waveforms. We can make a stronger
connection to the underlying physics while avoiding issues
with time alignment by comparing phases as a function of
polarization frequency, which corresponds to twice the
orbital frequency in the PN case. For circular inspiral this
frequency should grow monotonically in time, with the
frequency !c providing a physical reference of the ‘‘hard-
ness’’ of the tightening binary.

Circular inspiral phasing information is typically de-
rived in PN theory by imposing an energy balance relation
to deduce the rate at which !c evolves from the radiation
rate at a specified value of !c [1]. Though not strictly
derived in the PN context, this physically sensible condi-
tion currently allows the determination of the chirp rate
_!c�!c� up to 3.5PN order [11]. From such a relation,

information about phase and time are determined by inte-
grating d�=d!c � !c= _!c and dt=d!c � 1= _!c. The
phasing information can be represented by any one of
several relations among phase, frequency, and time.
Various approaches take the PN-expanded representation
of one of these relations as the PN ‘‘result’’ for waveform
phasing [1,11,18]. It has been demonstrated [11] that the
PN expansion of _!c�!c�, numerically integrated as
needed, has the greatest utility for conducting comparisons
of phasing with numerical results during the late inspiral,
and we adopt that convention.

For the purpose of comparison with our numerical simu-
lations, we invert the monotonic function !c�t� to obtain
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FIG. 1 (color online). Gravitational strain waveforms from the
merger of equal-mass Schwarzschild black holes. The solid
curve is the waveform from the high-resolution numerical simu-
lation, and the dashed curve is a PN waveform with 3.5PN order
phasing [14,15] and 2.5PN order amplitude accuracy [16]. Time
t � 0 is the moment of peak radiation amplitude in the simula-
tion.
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the phase as a function of frequency: ��!c� � �	t�!c�
.
Note that the effect of eccentricity is not removed from �,
though the ‘‘circularized’’ frequency !c does provide the
abscissa according to which phases are compared in the
different treatments.

Figure 2 shows the wave phases as a function of !cM;
here each phase is adjusted by addition of a constant so that
it vanishes at !cM � 0:054, corresponding to the time
1000M before the radiation merger peak in the high-
resolution numerical simulation. As demonstrated in
Fig. 3, the sequence of numerical results converges at
fourth order, allowing us to obtain a fifth-order-accurate re-
sult by Richardson extrapolation (thick solid line in Fig. 2).

In Fig. 2 we compare the numerical simulation results
for the phase with the numerically integrated PN expansion
of the chirp rate at 2.5PN, 3PN, and 3.5PN order. The
agreement of the extrapolated numerical result with the
integrated PN chirp rate improves with each successive
order, with the 3.5PN result showing striking agreement up
to about !cM� 0:15.

We look more quantitatively at this agreement in Fig. 3
by plotting the phase differences �� that accumulate
between different phase approximations, as a function of
frequency. The thick dash-dotted curve shows the phase
differences between our medium- and high-resolution re-
sults, while the thin dash-dotted curve shows the differ-
ences between our low- and medium-resolution results,
scaled so that for fourth-order convergence the curves
should superpose. This is indeed observed to good approxi-
mation. A good estimate for the error of the phase in the
high-resolution run is given by its difference from the
phase obtained by Richardson extrapolation; this comes

out to �93% of the medium-high curve shown in the
figure. Note that the cumulative errors in the numerically
generated waveforms accrue primarily at lower frequen-
cies, scaling approximately as !�5

c ; the thin dashed curve
shows a fit to the medium-high curve with this scaling. The
deviations of the medium-high curve from this fit show the
effect of eccentricity in our simulations. This accumulation
of phase errors at lower frequencies makes sense generally
since the simulations spend longer in that regime.

Without monotonic convergence between the 2PN,
2.5PN, and 3PN at the frequencies considered here, it is
difficult to estimate errors in the PN phase. Nonetheless we
tentatively take the difference between the integrated 3PN
and 3.5PN chirp rates, shown by the dashed line in Fig. 3,
as an upper bound on errors in a 3.5PN waveform. We also
show (thin dotted line) the accumulated phase differences
between the integrated 2.5PN and 3PN chirp rates to show
the relative contribution of the preceding PN term.

The trend in the slope of these error curves indicates the
rate at which phase error accumulates, as independently
estimated within each approach. The slope of the fit to the
medium-high error curve in Fig. 3 is initially higher than
that of the 3PN–3.5PN error curve, but decreases steadily,
matching the PN error-curve slope around !cM� 0:08
and less thereafter. For clarity a piece of the 3PN–3.5PN
curve has been translated upward to fit to the medium-high
curve in Fig. 3. This suggests that phasing errors for our
high-resolution simulation accumulate more quickly than
3.5PN phasing errors for !cM & 0:08 (t & �300M), with
the numerical simulation phasing being more accurate than
PN at higher frequencies. In both cases, the phase error
accumulates to roughly two radians by !cM� 0:15 as the
black holes begin to plunge together.

We now address the central objective of this Letter, a
quantitative comparison of numerical and PN phasing
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FIG. 2 (color online). Gravitational-wave phase, in radians, for
numerical and PN waveforms. The solid curve is a Richardson
extrapolation of the numerical results. The solid curve agrees
well with the phase obtained by numerically integrating the
3.5PN expansion of the chirp rate _!c�!c�. Each successive PN
order shown agrees better with the Richardson-extrapolated
result, although this is not true of all the preceding terms in
the PN sequence, since the sequence does not converge mono-
tonically.
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FIG. 3 (color online). Gravitational-wave phase-error esti-
mates. Differences between phasing from the integrated 3.5PN
chirp rate and Richardson extrapolation from the numerical
simulations (solid curve) are small, and are consistent with
internal error estimates for the numerical simulation results
and the PN sequence. Curves which involve numerical phases
are smoothed to remove high frequency noise.
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results. We compare the Richardson-extrapolated phase,
our best simulation estimate, with the integrated 3.5PN
chirp-rate result. The difference is shown in the solid curve
of Fig. 3. Note that, overall, the phase differences between
the PN and numerical results (solid curve) accumulate less
rapidly than the estimated errors in either the high-
resolution simulation or the 3.5PN results over much of
the frequency range shown. This illustrates that the nu-
merical and post-Newtonian predictions appear to be con-
verging to a common answer for waveform phase, in a
frequency regime where the validity of the PN predictions
could not previously be assessed. In the range 0:1 & !c &

0:15 the slope of the trend in the solid curve surpasses that
of the 3PN–3.5PN curve, with the precise crossover point
obscured by the effect of eccentric oscillations in the
numerical simulations; we have translated a portion of
the 3PN–3.5PN curve down to the solid line for clarity.
After this range, corresponding to �170 & t=M & �70,
and occurring 1 to 3 wave cycles before the estimated end
of the binary’s last orbit, the phase difference between the
best estimates of the numerical and PN approaches grows
more significantly.

Through the frequency range 0:054 & !cM & 0:15 the
net phase difference, measured against frequency, amounts
to less than 1 rad, a level of error that would be tolerable in
many gravitational-wave data analysis applications.
Superficially, phase differences in Fig. 1 may appear
smaller than the differences quantified in Fig. 3. This is
because the differences in chirp rate are more directly
evident in the frequency-based phase comparisons. This
more immediate connection to the merger dynamics, to-
gether with the avoidance of time-alignment issues, makes
frequency-based phase comparisons a more reliable indi-
cator of phasing differences.

Our results provide a crucial cross-validation of PN
waveforms from the late inspiral of binary merger, with
results of new long-lasting numerical simulations. These
simulations have sufficient accuracy to provide a mean-
ingful comparison with PN waveforms over the last t�
1000M of the coalescence, specifically addressing a binary
system of equal-mass nonspinning black holes. We find
phase agreement consistent with internal phase-error esti-
mates conducted in each approach, indicating that phase
accuracies within a few radians are now achievable for this
part of the coalescence waveform.

We emphasize, however, that there is still much impor-
tant work to be done in improving and further assessing PN
and numerical simulation waveforms. Certainly we have
only addressed one case in a large parameter space of
potential binaries, which will inevitably include systems,
such as rapidly precessing unequal-mass spinning binaries,
that are harder to treat with present PN and numerical

techniques. With either approach, even for our simple
case, a non-negligible amount of phasing error accumu-
lates over the range studied, and more will have accumu-
lated at lower frequencies addressable through the PN
approximation. We expect continuing developments in
numerical simulations and the pursuit of higher-order PN
treatments to be crucial for developing a refined under-
standing of coalescence waveforms, which will be crucial
in some data analysis applications for gravitational-wave
observations.
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