
Critical Scaling in Standard Biased Random Walks

C. Anteneodo* and W. A. M. Morgado†
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The spatial coverage produced by a single discrete-time random walk, with an asymmetric jump
probability p � 1=2 and nonuniform steps, moving on an infinite one-dimensional lattice is investigated.
Analytical calculations are complemented with Monte Carlo simulations. We show that, for appropriate
step sizes, the model displays a critical phenomenon, at p � pc. Its scaling properties as well as the main
features of the fragmented coverage occurring in the vicinity of the critical point are shown. In particular,
in the limit p! pc, the distribution of fragment lengths is scale-free, with nontrivial exponents.
Moreover, the spatial distribution of cracks (unvisited sites) defines a fractal set over the spanned interval.
Thus, from the perspective of the covered territory, a very rich critical phenomenology is revealed in a
simple one-dimensional standard model.
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Since the beginning of the past century, random walk
(RW) theory has allowed us to deal with a diversity of
problems in a number of areas of physics, as well as in
many other theoretical and applied fields, e.g., biology,
chemistry, computer sciences, and finance [1]. The doubt-
less importance of RW models, with their wide range of
distinct applications, stems from their simplicity and ef-
fectiveness in modeling systems experiencing disorder,
noise or randomness, which are ubiquitous features of
real systems. In particular, in physics, RWs can be seen
as the ‘‘harmonic oscillator’’ of disordered and stochastic
systems, serving as a starting point for more realistic
models.

A fundamental quantity in any phenomenon where RWs
are relevant is the number of distinct sites visited, since it
furnishes the extent of the active territory. Indeed, it is
crucial in processes ranging from reaction kinetics to
population dynamics, and also in technical applications
such as in search strategies [2,3]. As a consequence, ana-
lytical and numerical estimates of the covered territory are
available for lattices of different geometry, dimensionality,
and boundary conditions [4,5], for diverse statistics of
jumps, symmetric or not [6], and other variants [7]. Time
covering problems [8,9] and coverage by a large number of
RWs [10] have been investigated too. The vast literature on
coverage mainly deals with two dimensions, although there
are also many works about the standard symmetric one-
dimensional (1D) RW (e.g., [4,5,9]). Meanwhile, as far as
we know, little or no attention has been paid to the asym-
metric 1D case, despite of its importance in biased or
anisotropic processes such as electrophoresis, polymer
translocation through pores, and Brownian ratchets.
However, as we will show, the asymmetric 1D problem
presents its own peculiar features and nontrivial scaling
properties.

In the present work, we investigate the coverage of an
infinite 1D regular lattice by a single RW characterized by
(i) asymmetry, that is, at each independent step there is a

probability p � 1=2 to step, let us say, to the right, and
additionally, (ii) distinct step sizes in opposite directions.
Let us call l� and l� the sizes of the steps in the positive
and negative directions, respectively. They will be ex-
pressed as integer multiples of the arbitrary lattice parame-
ter. In the symmetric case l� � l�, only the positions that
are multiple of l� are reachable. Moreover, the covered
fraction of the interval spanned by the RW is 1=l�, inde-
pendently of p. In particular, if l� � l� � 1, complete
coverage of the RW span occurs. However, for the asym-
metric case l� � l�, where the two anisotropic ingredients
compete, a nontrivial changeover between different cover-
age regimes, dependent on p, may take place. In fact, we
will show that a critical phenomenon occurs as the jump
probability p reaches a critical value. Moreover, we will
characterize the transition as well as the partially covered,
fragmented, states, focusing on their scaling properties.

The general basic outlines to determine the number of
distinct sites visited by a RW can be found, for instance, in
Refs. [4,5]. In general, the average number of different
sites visited at step n, Sn, can be expressed as Sn � 1�P
s�0

Pn
i�1 Fi�s�, where Fi�s� is the probability that the

walker arrives at site s for the first time at step i.
Moreover, Fi�s� and Pj�s� (the probability that, at time
step j, the walker is located at integer position s) are related
through

 Pn�s� �
Xn
i�1

Fi�s�Pn�i�0�; for n � 1; (1)

while Po�s� � �s;0. Then, from Eq. (1), one obtains the
following relation between generating functions: P�s; z� �
�s;0 � F�s; z�P�0; z�, where P�s; z� �

P
n�0Pn�s�z

n and
F�s; z� �

P
n�1Fn�s�z

n. Assuming jzj � 1, one obtains

 S�z� � ��1� z�2P�0; z�	�1; (2)

where S�z� 

P
n�0Snz

n. For the present problem, it is
easy to show that P�0; z� explicitly is
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 P�0; z� �
X
k�0

�l��l��k
l�

k

 !
~z�l
��l��k=l� ; (3)

with ~z � zpl
�=�l��l���1� p�l

�=�l��l��. From the definition
of S�z�, the quantity Sn can be obtained as 1=n! times the
nth derivative of S�z�, evaluated at z � 0.

If l� and l� have common factors, a mapping exists into
the corresponding case of reduced (mutually prime)
lengths. Therefore, we will restrict our study to asymmetric
coprime couples of step lengths. Within the latter class of
RWs, one has the subclass where one of the lengths is
unitary. Let us consider as representative of this subclass,
the case �l�; l�� � �2; 1� that admits an exact solution. In
this case, the sum in Eq. (3) becomes

 P�0; z� �
X
k�0

3k
k

� �
pk�1� p�2kz3k;

that can be reduced to

 P�0; z� � <�iy�
��������������
1� y2

q
�1=3=

��������������
1� y2

q
; (4)

for jyj � 1, where y2 � �27=4�p�1� p�2z3. Tauberian
methods can be applied to evaluate Sn [4]. Alternatively,
the nth derivative of S�z� can be calculated through the
Cauchy integral formula over a suitable contour encircling
the origin. Since S�z� given by Eq. (2) has one single pole
in the complex plane, at z � 1, then, in the limit of large n,
one gets (after conveniently deforming the integration
path) Sn��d�zn�1P�0;z�	�1=dzjz�1��n�1�=P�0;1��
c0, where c0 is a constant of order 1. It is noteworthy that
this is the same asymptotic law found for the standard RW,
with unbiased symmetric jumps to nearest neighbors
(hence l� � l� � 1), but in 3D regular lattices [4]. The
fraction of different sites visited (measured over the aver-
age length of the RW) is fv;n 
 Sn=Ln, where Ln is the
average total displacement. In the large n limit, the length
of the RW, for p � 1=3, is Ln � jhsinj � j3p� 1jn. Thus,
asymptotically, fv;n becomes fv � �j3p� 1jP�0; 1�	�1;
hence, the fraction of unvisited sites is

 fu � 1� fv � 1� �j3p� 1jP�0; 1�	�1; (5)

where P�0; 1� is given by Eq. (4).
Figure 1(a) exhibits fu as a function of p, for �l�; l�� �

�2; 1�. A transition occurs at pc � 1=3, where fu vanishes
as fu � ��O��2�, with � 
 p� pc, that can be derived
exactly from Eq. (5). For p � pc all sites are eventually
visited at least once, as expected, because, as soon as
hsin � 3�< 0, the walker is biased towards the direction
of unitary steps, which in turn implies full coverage of the
RW length. Meanwhile, for p > pc, sequences of adjacent
visited sites (fragments) are interrupted by unvisited ones.
Therefore, the RW undergoes a transition from a fully
covered state to a fragmented one. For other instances of
(l�, 1), the transition occurs at the critical probability pc �
1=�l� � 1�, where hsin � �pl� � p� 1�n changes sign

(driftless diffusion). The case �l�; l�� � �3; 1�, obtained
by means of Monte Carlo (MC) simulations up to n �
107 time steps, is also displayed in Fig. 1(a), exhibiting
similar features. In both cases, fu��� vanishes with unitary
exponent [see inset of Fig. 1(a)].

For nonunitary coprime step lengths [see Fig. 1(b)] a
more general scenario arises. Full coverage occurs only at
the critical point pc � l�=�l� � l��, where hsin � �pl� �
�p� 1�l�	n is strictly null. Fragmented states are found
both below and above pc, with maximal unvisited frac-
tions, f�u � 1� 1=l� and f�u � 1� 1=l�, respectively.
Thus, the cases (l�, 1), with l� > 1, constitute special
instances where one of the states is fully covered, in
accordance with the fact that the corresponding maximal
unvisited fraction f�u vanishes. Although we are not deal-
ing with symmetric steps, notice that in the symmetric case
(1,1), f�u � f�u � 0 and the full curve fu�p� collapses to
zero, in agreement with the facts that there is no transition
in such case and that full coverage occurs for any p.

As a paradigmatic example, we will analyze the analyti-
cally soluble case �l�; l�� � �2; 1�, in the vicinity of the
critical point, i.e., in the limit �! 0�. In order to quanti-
tatively characterize fragment sizes, the usual computed
quantities are [11]

 

~n ‘ �
X
‘�1

n‘; h‘i �
X
‘�1

n‘‘
2

�X
‘�1

n‘‘; (6)

where n‘ is the mean number of fragments of size ‘,
normalized per site. Since two contiguous fragments are
separated, in the (2,1) case, by one single unvisited site,
then ~n‘ � fu, that vanishes as �� [see Fig. 1(a)]. Also,
straightforwardly,

P
‘�1n‘‘ � 1� fu, that approaches 1 in

the critical limit. Noticing that n‘‘ is the probability that a
given site belongs to a fragment of size ‘, then, ~‘ �P
‘�1n‘‘

2 defines the mean size of the fragments. In order
to compute h‘i, the distribution of sizes of covered clusters
(or fragments), n‘, was numerically built from MC simu-
lations run up to n � 106=� steps and averaged over at
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FIG. 1. Fraction fu of sites left unvisited as a function of p. In
all cases, symbols correspond to MC simulations. and dotted
lines are guides to the eye. (a) �l�; l�� � �2; 1� (circles) and (3,1)
(squares). The full line corresponds to the theoretical prediction
given by Eq. (5). Inset: fu vs � 
 p� pc in log-log scale for the
same data of the main frame. (b) (l�, l�) takes diverse coprime
values indicated on the figure.
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least 102 different realizations. The distributions for dif-
ferent values of � are displayed in Fig. 2. For very large ‘,
the decay is exponential: � exp��‘=��. Parameter �, to-
gether with h‘i, are plotted as a function of � in the upper
inset of Fig. 2 (being � � h‘i=2� ���, with � � 1:15).
Meanwhile, n1 � �, representing a finite fraction of fu. In
the lower inset of Fig. 2, the same distributions of the main
frame are scaled. Let us employ the standard ansatz for
cluster size distributions [11], defined through

 n‘��� / �!���1=�‘�=��1=�‘��; (7)

where ��x� goes to a constant value for small x and decays
exponentially in the opposite limit of large x. The power-
law decay, with exponent � � 1:15, that emerges in the
limit of vanishing � is characteristic of a critical behavior
and signals the coexistence of fragments of all sizes in that
limit.

By means of integral approximations to the sums in
Eqs. (6) and employing Eq. (7), one gets the following re-
lations amongst critical exponents. First, 1 �

P
‘�1n‘‘ �R

1
1 n‘‘d‘� �!�2=�, implying ! � 2=�. Second, ��� �
h‘i �

R
1
1 n‘‘

2d‘��!�3=�, hence ! � 3=�� �, that,
together with the preceding relation, implies � � 1=�
and ! � 2=�. The latter equality is in good accord with
the behavior of the envelope of the distributions that has
slope �2 (Fig. 2). Excellent data collapse is obtained for
! � 2=�, with � � 1:15. Additionally, since ~n‘ � �,
then, from ~n‘ �

R
1
1 n‘d‘� �!���, it must be � � 2�

� � 2� 1=�. From the scaled histograms, we obtained
� � 1:15 0:05, consistent with the theoretical prediction
within error bars.

At this point, it is worth comparing our results with those
for another 1D critical phenomenon, namely, 1D percola-

tion (1DP) with bonds connecting nearest neighbors [12],
to which many important 1D models are related (e.g.,
Ref. [13]). On one hand, for 1DP, ~n‘ � �2��p , with �p �
1, as in the present problem. On the other hand, h‘i �
���p , with �p � 1 and !p � 2�p � 2, values that are
close but different from those found for the present prob-
lem. Moreover, the distribution of fragment sizes is a
power-law, in contrast with the pure Poissonian one for
1DP. Then, we may conclude that the present model does
not belong to the 1DP universality class. Indeed, by iden-
tifying visited sites with occupied ones, the occupation
probability in our problem is fv, that tends to one in the
critical limit. However, different from the standard perco-
lation problem, in the present case, unvisited sites are not
independently located, e.g., if �l�; l�� � �2; 1�, a sequence
of two or more adjacent unvisited sites has associated a
strictly null probability of occurrence. Therefore, occupa-
tion correlations arise which are absent in the standard
percolation problem.

Concerning unvisited sites, their spatial distribution was
investigated through a box-counting procedure [11,14].
From the history of a single RW, a segment of length L �
220 � 106 was divided into boxes of length 2k, with k � 0.
For each " � 2k=L, the number of boxes containing un-
visited sites, N�"�, was computed. Outcomes, accumulated
over 102 realizations, are displayed in Fig. 3. The neat
behavior N�"� � "�df , for small ", means that the spatial
distribution of unvisited sites constitutes a fractal set, with
dimension df. Moreover, the fractal exponent is in good
accord with the exact scaling relation df � �� 1.

In summary, we have investigated the spatial coverage
of single discrete-time anisotropic RWs, moving on an
infinite one-dimensional lattice. Anisotropy manifests
both in the length (l�, l�), as well as in the probabilities
(p, 1� p), of jumps in opposite directions. We revealed
the existence of a critical phenomenon in 1D that may
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FIG. 3. Scaling plot of the number of boxes N containing
unvisited sites as a function of " (box size in units of L, where
L � 220) for �l�; l�� � �2; 1� and different values of � indicated
on the figure. The scaling exponent is � � 1=�1� df�, where
df ’ 0:15. Inset: original plots of the data scaled in the main
frame. All solid lines are drawn for comparison and their slopes
indicated on the figure.
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FIG. 2. Distribution of the sizes of covered fragments (n1 was
omitted), for �l�; l�� � �2; 1� and different values of � �
10�1; 3� 10�2; . . . ; 10�4, from a to g, respectively. Upper inset:
mean size of fragments h‘i (squares), inverse exponential rate �
(circles), and �10n1	

�1 (triangles) as a function of �. Lower
inset: Scaling plot of all the distributions represented in the main
frame, with ! � 2=� and 1=� � 1:15 0:05. Dashed lines are
drawn for comparison and their slopes indicated on the figure.
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result from the competition between the opposite trends
provided by the two anisotropic ingredients (step size and
step probability). We illustrated our findings with the par-
ticular case in which the steps are �l�; l�� � �2; 1�, which
undergoes a transition from fully to partially covered states
as the jump probability p overcomes a critical value. The
power-law distribution of sizes of covered segments, oc-
curring in the limit p! p�c , indicates the coexistence of
fragments of all lengths, with no characteristic length
scale. Moreover, the spatial distribution of scission points
(unvisited sites) determines a fractal set, in contrast with
other models where the deposition of cracks has common
statistics (e.g., 1D percolation [12] and scission model
[15]). It is pertinent to remark that similar features have
been observed in one-dimensional reaction-diffusion
[16,17], q-state Potts spin flipping [17], and fragmentation
dynamics [18], although criticality is attained as time
evolves and critical exponents are different. A possible
connection remains to be investigated.

Other asymmetric instances with steps (l�, 1), whose
critical curves are illustrated in Fig. 1(a), display a quali-
tatively similar picture to the case (2,1). Meanwhile, if both
steps take nonunitary coprime values [Fig. 1(b)], the same
critical phenomenology is observed in both limits �! 0.
As a further example, scaling plots are also displayed, in
Fig. 4, for the case �l�; l�� � �5; 3� in the limit �! 0�. In
general, critical exponents related to the fractal dimension
are not universal but depend on the step lengths, since
distinct site occupation correlations take place.

On one hand, the asymmetric RW, seen from the present
perspective, may bear interest per se because of the non-
trivial criticality contained in a simple model. On the other
hand, it may constitute a useful statistical paradigm for the
formation of domains or fragments by a nonequilibrium
process driven by biased signal propagation. Additionally,
the current coverage problem may be potentially useful in
technical applications, e.g., in search strategies such as for
cache hit/miss ratio optimization [3].
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FIG. 4. Critical behavior for �l�; l�� � �5; 3�. Results corre-
spond to the limit �! 0�, but the same exponents are found in
the limit �! 0�. (a) Scaling plot of the distribution of the sizes
of covered fragments, values of � as in Fig. 2, with ! � 2=�
and 1=� � 1:5 0:2, � ’ 1:4. (b) Scaling plot of the number of
boxes N containing unvisited sites as in Fig. 3. In this case df ’
0:4. The dotted line in (a) and solid lines in (b) are drawn for
comparison and their slopes indicated on the figure.
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