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We address the problem of ‘“‘nonlocal computation,” in which separated parties must compute a
function without any individual learning anything about the inputs. Surprisingly, entanglement provides
no benefit over local classical strategies for such tasks, yet stronger nonlocal correlations allow perfect
success. This provides intriguing insights into the limits of quantum information processing, the nature of
quantum nonlocality, and the differences between quantum and stronger-than-quantum nonlocal

correlations.
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Nonlocality is a fundamental aspect of quantum me-
chanics [1]. However, relativity allows stronger-than-
quantum mechanical correlations [2]. What characterizes
the nature of quantum nonlocality? To address this ques-
tion, we define a very natural nonlocal task, namely, “non-
local computation,” in which separated parties must
compute a function without any individual learning any-
thing about the inputs. This task is very close to others for
which quantum nonlocality is known to be of benefit [3,4].
However, surprisingly, quantum mechanics provides no
advantage over classical mechanics for nonlocal computa-
tion. Indeed, neither quantum nor classical mechanics can
do better than a trivial linear approximation. On the other
hand, nonlocal correlations stronger than quantum [2,5-9]
allow perfect nonlocal computation. Our results provide
intriguing connections between computation and nonlocal-
ity and new insights into the nature and limits of quantum
nonlocality.

Following earlier work [5] in which the problems of
“nonlocal equality”” and ‘‘nonlocal majority‘‘ were intro-
duced, we define here the ‘“‘nonlocal computation‘ of a
general boolean function by two parties. At the end of the
Letter, we generalize the situation to more parties and to
more general nonlocal tasks.

The ordinary computation of a boolean function f takes
as input a string of n bits z = 7,2, ..., z,, and gives as
output a single bit ¢ such that

c=f(z2)=f(z1,22 -+ 2n) (D

To each ordinary computation we now associate a non-
local version. The idea is for two parties, Alice and Bob, to
compute the function in a collaborative way, but without
communicating with each other during the computation,
and without learning anything individually about the input
bits z. Note the distinction between this and distributed
computation. In the latter, some input bits are given to
Alice and the rest to Bob, and hence each party learns
something about the global input. Furthermore, we allow
no communication, rather than evaluating the minimum
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amount required (the communication-complexity), such as
in the quantum advantage of [4].

Alice and Bob know in advance what function they have
to compute and may arrange a common strategy, but they
are separated before being given their inputs. For each
input bit z;, Alice is given a bit x; and Bob a bit y;, such
that their XOR is equal to z; (z; = x; ® y;). However, indi-
vidually x; and y; are totally random, being with equal
probability O or 1. Since Alice and Bob are not allowed to
communicate, they therefore learn nothing about the input
z;- To successfully perform the nonlocal computation,
Alice must produce an output bit @ and Bob an output bit
b,suchthatc = a ® b, i.e.,

a@b:f(xe}’) :f(xl ®yl:x2®y2)-~'xxn®yn), (2)

with the shorthand x = x;x,,...,x, and y = y;y,, ..., ¥,
for Alice’s and Bob’s input bit strings. The task we con-
sider is for Alice and Bob to maximize the probability of
success of their nonlocal computation, given either
(a) classical resources, (b) quantum resources, or (c) -
stronger-than-quantum nonlocal resources.

We allow the inputs z to be given by an arbitrary
probability distribution p(z). However, as mentioned
above, in order to prevent Alice and Bob learning some-
thing about z, it is necessary to take all inputs x and y
satisfying z = x @ y with equal probability, i.e.,

L ifxey=
p(x,ylz)={2 if x®y =z 3)

0 otherwise

The average success probability P for Alice and Bob to
satisfy Eq. (2) is therefore given in terms of the success
probability for particular inputs, P, ,, by

1
P =3 p@payPy = 5> px@ Py ()
REMY X,y

Nonlocal computation with quantum resources.—
Consider the nonlocal computation of a function f, given
quantum resources. In the most general quantum protocol,
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Alice and Bob share an entangled quantum state |¢/) and
perform projective measurements on their subsystem de-
pendant on their inputs, given by Hermitian operators a,
and Ey respectively, with eigenvalues 0 and 1. They then
output their measurement results. Note that protocols in-
volving initially mixed states or generalized measurements
(involving ancillas) can all be represented in this form by
expanding the dimensionality of the initial state. The suc-
cess probability P, , is the expectation value of the projec-
tor onto the eigenstates of @, and l;y whose eigenvalues
satisfy (2), which can be expressed as

1+ (_1)f(x®y)+&x+l;y
P = . o ©
Hence, using (4), the total probability of success is
1 1 o n
= _ 4+ = _1\/(xe®y)+a,+b,
Po =5+ 5 nyP(X ® YN Wl(— 1)/t |y - (6)

Extending the Hilbert space from H to H ® C*', we
define normalized states |a) and |8) and a Hermitian
operator ® as follows (Note that this is to aid in the
analysis, and does not correspond to any physical change)

1 .
|a>—ﬁ;(—l)»®ﬂlw>®lx>, @)
=S e el ®)
® =3 (= 1)/ px @ y), ©)
xy

where |x) and |y) are computational basis states in C?".
Equation (6) can then be reexpressed in the simple form

Polf) = 51+ (alt ® 1)), (10)

from which it follows that

Po(f) = 51+ Kall | 1@ @ I 18)) = 51+ I & I,
e8Y)

where || ® || is the operator norm of ® (the largest modu-
lus eigenvalue).

To investigate the eigenstates and eigenvalues of b, we
first rewrite it in the Fourier-transform basis

=\ — __1__ —1)#*]x
|u>—@§( 1)"~x) (12)

where u - x is the inner product modulo 2 of the bit strings
wand x, u - x = u;x; ® uyx, ® ... ® u,x,. This gives

b= (§|a><a|)ci>(§|a><ﬂ|)

1
=30 D (Z DIt (x @ )| )l

uvxy

— 5 SO = D)l

uvyz
= (S0t (13)

where in the second line we have replaced the sum over x
by one over z = x & y. The eigenstates of & are therefore
|i7), and inserting the modulus of the largest eigenvalue in
(11), we obtain the quantum bound

1

> (1@ p()

Z

>. (14)

Nonlocal computation with classical resources.—We
now consider the optimal classical strategy for the nonlocal
computation of f. Obviously, this is a problem that can be
addressed without any reference to quantum theory.
However, as quantum theory includes all classical strat-
egies as special cases, the quantum bound (14) is also a
bound on the classical probability. We might expect, how-
ever, that the best quantum strategy would perform better
than the best classical one. We show now that this is not the
case, by explicitly giving a classical strategy that achieves
the quantum bound.

The probability of success for a (deterministic) classical
strategy is given by

| I G ,
Pe =5+ mg > plx@y)(=Dfterath  (s)
xy

T
where a, and b, are the outputs of Alice and Bob for the
given input strings x and y. (Note that this can be obtained
from the quantum probability (6) by replacing the opera-
tors a, and By by the numbers a, and b,.)

Let us now consider the particular classical strategy
(parameterized by an n-bit string u, and a single -bit )

a,=u-x by=u-y®Sé. (16)

Inserting these a, and b, in (15), we obtain
1
Pe==(14+ (=102 (—1y@Fwi5(z)). 17
=31 Ty Epa) an

Choosing 6 to equal the sign of the summation, and max-
imizing over different choices of u, we achieve a classical
success probability equal to the bound obtained in (14). It
follows that this strategy is optimal and no other classical
or quantum strategy can do better. Hence, we have proven
that quantum physics provides no advantage over classical
physics for the nonlocal computation of f.
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Moreover, the optimal strategy actually produces the
output ¢ = u -z @ 8 (since ¢ = a, ® by); hence, all that
is achieved is the optimal linear approximation of f. Since
nonlinearity is essential for universal computation, we
could say that nonlocal computation is impossible in both
classical and quantum theory.

Nonlocal computation using stronger-than-quantum
nonlocal correlations.—In [2], Popescu and Rohrlich dis-
covered the existence of nonlocal correlations that are
consistent with relativity (i.e., that do not allow signalling),
yet which are not achievable within quantum theory. A
great deal of research has been undertaken recently into
such stronger-than-quantum nonlocal correlations [5-9],
with the aim of better characterizing the differences be-
tween them and quantum correlations, and hence better
understanding the nature and limits of quantum nonlocal-
ity. Here, we consider the power of stronger-than-quantum
nonlocal correlations for nonlocal computation.

The first question we address is: Do there exist stronger-
than-quantum nonlocal correlations that allow nonlocal
computation beyond the linear approximation (i.e., quan-
tum) limit? To investigate this, we allow Alice and Bob
access to an extended black box, for which the inputs (x
and y) and outputs (a and b) can be related by any non-
signalling probability distribution P(a, blx, y) [10]. In fact,
with such correlations, we can solve any nonlocal problem
with perfect success, simply by setting

(L ifaeb=f(x®y)
Pla, blx. y) {6 otherwise ' (18)

This probability distribution gives both possible sets of
outputs fulfilling (2) with equal probability (e.g., a =
0b = 0[50%]a = 1, b= 1[50%] when f(x®&y)=0).
Each party individually obtains a random bit and learns
nothing about the other party’s input, so the distribution is
nonsignalling. Furthermore, as the outputs generated sat-
isfy (2) perfectly, we obtain the maximal success proba-
bility P§*(f) = 1 (where here the index S stands for
“stronger-than-quantum correlations’”). In fact, each non-
local computation that goes beyond the linear approxima-
tion limit and yields maximally random outputs for Alice
and Bob (individually) is by itself a stronger-than-quantum
nonlocal correlation.

Having established that some stronger-than-quantum
nonlocal correlations help in nonlocal computation, we
now come to the crucial question: Do all stronger-than-
quantum nonlocal correlations help in (at least some) non-
local computation? In general, this remains an open and
intriguing question. However, the following section indi-
cates that perhaps this is the case.

Nonlocal computation of AND using PR-boxes.—The
simplest and most fundamental stronger-than-quantum
nonlocal correlation has a 1 bit input and 1 bit output for
each party and is, in that context, a ‘“‘maximally nonlocal’’
correlation [2,6,7]. It is

(19)

L ifaeb=xy
P =12
(@, bl ) {O otherwise

where x, y, a, and b are single bits. Although similar to the
distribution given by (18), note that this correlation does
not correspond to a nonlocal computation problem because
its governing equation a ® b = xy is not of the form a &
b = f(x & y). Fictitious devices yielding such correlations
have become known as PR-boxes [2].

Similarly, the AND function (AND(z;, z,) = z;2,) repre-
sents the simplest case in which nonlocal computation is
not trivial. In order to implement this gate nonlocally, Alice
and Bob’s outputs must obey [5]

a®b=(x; ®y)(x, ®y,). (20)

When the different values of the input bits z; and z, are
given with uniform probability (p(z) = 3), it follows from
(14) that the maximal success probabilities obey

3
PEX(AND) = P (AND) = 7 < P{™(AND) = 1.

A strategy that achieves the classical or quantum bound is
for Alice and Bob to give the output zero in all cases [u =
6 = 01in (16)], which only fails when z; = z, = 1.

It is possible to compute nonlocal-AND perfectly using
two PR-boxes (to generate the x;y, and x,y; terms) and
local operations (to generate the x;x, and y;y, terms). In
fact, because PR-boxes allow a perfect implementation of
nonlocal-AND and it is easy to implement nonlocal-NOT
using only local operations (e.g., a =x, b =y ® 1), we
can build any nonlocal computation perfectly using only
PR-boxes and local operations. This also follows straight-
forwardly from van Dam’s result [8] that any distributed
computation can be performed perfectly using PR-boxes
and 1 bit of communication.

Now suppose we consider noisy PR-boxes, i.e., PR-
boxes that give a correct result with probability ¢ and an
incorrect result with probability 1 — g. Implementing the
same scheme as before with two noisy PR-boxes, the
success probability is given by P = ¢> + (1 — g)?, which
will be greater than 3/4 (the classical and quantum bound)
whenever g > (2 + +/2)/4. Tantalizingly, ¢ = (2 + +/2)/4
is the maximal value of success probability for PR-boxes
constructed via quantum-mechanical means [this is equiva-
lent to the Tsirelson [11] bound for the standard Clauser-
Horne-Shimony-Holt (CHSH) [3] inequality]. Hence noisy
PR-boxes help for computing nonlocal-AND if and only if
they are better than quantum mechanical.

Discussion.—We have shown that quantum nonlocality
gives no advantage over classical resources for nonlocal
computation, and indeed both can only do as well as simple
linear approximations. However, generalized nonlocal cor-
relations can allow perfect success in such tasks. For any
nonlinear function f, we therefore find that

PEX(f) = Pa™(f) < P§™(f) = L 2
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This is the main result of the Letter and gives an intriguing
insight into the nature of quantum nonlocality. We now
consider several extensions and open questions.

Note that in the definition of success probability above,
we assumed a fixed prior distribution 5. One could equally
well ask for the maximum success probability in the worst
case (i.e., when each strategy is evaluated using its worst
). Fortunately, the minimax theorem of game theory [12]
tells us that in the classical case, when Alice and Bob can
use shared randomness, the optimal worst-case success
probability is equal to the maximal success probability
(PE™) for some particular prior distribution p. That quan-
tum strategies can do no better then follows from the fact
that Pg*™ = Pg** for the chosen p. Hence, even in this
scenario, the identity of classical and quantum optimal
performance is preserved.

It is also straightforward to extend the above results to
the nonlocal computation of f(z) by any number of parties.
In the multiparty case, the function’s inputs and output are
encoded in the modulo 2 sum of m separate inputs x”) and
outputs a'”) (with all sets of x") consistent with z equally
probable). Note that this task cannot be easier than non-
local computation with only two parties; hence, the bounds
obtained above must still apply. Furthermore, it is easy to
see that the classical strategy

tr=0

22
r=1....m—1 (22)

< x(n)
aa) = [0
u-x

yields the same success probability as the 2-party strategy
(16), and therefore achieves the quantum bound (14).

We also note that each choice of f(z) and j(z) corre-
sponds to a Bell-type inequality:

> Clx, y)AB,) = K, (23)
X,y

where C(x,y) = (—1)/0®) p(x @ y), the observables A,
and Ey have outcomes *1, and K = 2"[2PE*(f) — 1].
Our results imply that there is also a Tsirelson-type in-
equality with exactly the same coefficients constraining
quantum measurements. It would be interesting to discover
if any of these inequalities generate facets of the Bell-
polytope of classically attainable probability distributions
P(ablxy) [13] (and consequently a facet of the set of
attainable quantum probability distributions). In any case,
we find that the Bell-polytope and the convex Tsirelson
body have many (potentially lower-dimensional) faces in
common which are not trivially inherited from the proba-
bility or nonsignalling constraints.

This also leads us to a considerable generalization of the
nonlocal tasks described so far. Consider any Bell expres-
sion of the form given by (23), for which the largest
singular value of the matrix C(x, y) corresponds to an

operator |i)#| [where |ii), |D) are as defined in (12)].
Then it follows from our analysis that quantum resources
do not offer a benefit over classical resources for that task.
However, note that not all nonlocal tasks for which quan-
tum resources give no benefit are of this type [14].

Although functions with a single-bit output are very
important (as they encapsulate all decision problems), it
would also be interesting to extend these results to func-
tions with a multibit output, or with different input and
output alphabets (e.g., ternary rather than binary). In both
cases, it is important to consider how success will be
measured, as in addition to the total success probability
used above, one could reasonably measure success by the
average ‘“‘distance” between the output and the correct
answer. For functions with a multibit output, where success
is measured by the number of correct output bits, our
results still imply that quantum strategies provide no ad-
vantage over classical (because the best strategy is to
optimally compute each output bit independently).

Perhaps the most interesting open question is whether all
stronger-than-quantum correlations are helpful in perform-
ing some nonlocal computation. We have already shown
that an interesting class of nonlocal correlation has this
property (noisy PR-boxes). If this could be shown to hold
generally, we would obtain a powerful and intuitive char-
acterization of gquantum nonlocality, as those correlations
which do not help in nonlocal computation, and a deeper
insight into why stronger nonlocal correlations (appar-
ently) do not occur in nature.
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