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Conceptually different from the decoherence program, we present a novel theoretical approach to
macroscopic realism and classical physics within quantum theory. It focuses on the limits of observability
of quantum effects of macroscopic objects, i.e., on the required precision of our measurement apparatuses
such that quantum phenomena can still be observed. First, we demonstrate that for unrestricted
measurement accuracy, no classical description is possible for arbitrarily large systems. Then we show
for a certain time evolution that under coarse-grained measurements, not only macrorealism but even
classical Newtonian laws emerge out of the Schrodinger equation and the projection postulate.
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Quantum physics is in conflict with a classical world
view both conceptually and mathematically. The assump-
tions of a genuine classical world—Iocal realism and
macroscopic realism—are at variance with quantum me-
chanical predictions as characterized by the violation of the
Bell and Leggett-Garg inequality, respectively [1,2]. Does
this mean that the classical world is substantially different
from the quantum world? When and how do physical
systems stop behaving quantumly and begin behaving
classically? Although questions like these date back to
Schrédinger’s famous cat paper [3], the opinions in the
physics community still differ dramatically. Various views
range from the mere experimental difficulty of sufficiently
isolating any system from its environment (decoherence)
[4] to the principal impossibility of superpositions of mac-
roscopically distinct states due to the breakdown of quan-
tum physical laws at some quantum-classical border
(collapse models) [5].

Macrorealism is defined by the conjunction of two pos-
tulates [2]: “Macrorealism per se: A macroscopic object
which has available to it two or more macroscopically
distinct states is at any given time in a definite one of those
states. Noninvasive measurability: It is possible in princi-
ple to determine which of these states the system is in
without any effect on the state itself or on the subsequent
system dynamics.” These assumptions allow one to derive
the Leggett-Garg inequalities.

In this Letter—inspired by the thoughts of Peres on the
classical limit [6]—we present a novel theoretical ap-
proach to macroscopic realism and classical physics within
quantum theory. We first show that, if consecutive eigen-
values m of a spin component can sufficiently be experi-
mentally resolved, a Leggett-Garg inequality will be
violated for arbitrary spin lengths j and the violation
persists even in the limit of infinitely large spins. This
contradicts the naive assumption that the predictions of
quantum mechanics reduce to those of classical physics
when a system becomes ‘‘large” and was demonstrated for
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local realism by Garg and Mermin [7]. Note that due to the
resolution of consecutive eigenvalues, one cannot speak
about a violation of macrorealism. If, however, for a
certain time evolution one goes into the limit of large
spin lengths but can experimentally only resolve eigenval-
ues m, which are separated by much more than the intrinsic
quantum uncertainty, i.e., Am > ./j, the outcomes appear
to obey classical (Newtonian) laws. This suggests that
classical laws emerge out of quantum physics under the
restriction of coarse-grained measurements.

While our approach is not at variance with the decoher-
ence program, it differs conceptually from it. It is not
dynamical and puts the stress on the limits of observability
of quantum effects of macroscopic objects. The term
“macroscopic’’ throughout the Letter denotes a system
with high dimensionality rather than a low-dimensional
system with a large parameter such as mass or size.

Consider a physical system and a quantity Q, which
whenever measured is found to take one of the values *1
only. Further consider a series of runs starting from iden-
tical initial conditions such that on the first set of runs, Q is
measured only at times #; and f,, only at #, and 3 on the
second, at #; and #, on the third, and at #; and 74 on the
fourth (0 =, <1, < t; <t,). Introducing temporal cor-
relations C;; = (Q(t;)Q(t;)), any macrorealistic theory pre-
dicts the Leggett-Garg inequality [2]

KEC12+C23+C34_C14S2. (1)

This inequality is violated, e.g., by the precession of a
Spin-% particle with the Hamiltonian H = %w&x with @
the angular precession frequency and &, the Pauli
x-matrix. (We use units in which the reduced Planck con-
stant is 7 = 1). Measuring the spin along the z-direction,
we obtain C;; = (6(1;),(t;)) = cos[w(t; — #;)]. Choos-
ing, e.g., equidistant measurement times with time differ-
ence At = 7/4w, inequality (1) is violated as K = 2+/2,
which is understandable since a spin- % particle is a genuine
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quantum object. In contrast, any rotating classical spin
vector always satisfies the inequality.

In the following, we show that the Leggett-Garg inequal-
ity (1) is violated for arbitrarily large spin lengths j. As the
first measurement acts as a state preparation for the sub-
sequent measurement, the initial state is not decisive, and it
is enough to consider the maximally mixed state
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with 1 the identity operator and |m) the J. (spin
z-component) eigenstates. The Hamiltonian is

H=3/20+wl, 3)

where J is the rotor’s total spin vector operator, J, its
x-component, / the moment of inertia, and @ the angular
precession frequency. Here, J?/2I commutes with the
individual spin components and does not contribute to
the time evolution. The solution of the Schrodinger
equation produces a rotation about the x-axis, repre-
sented by the time evolution operator U, = e~ with

t the time. We define the parity measurement 0=

{n:,j(—l)f*”’lm>(m| = ¢im0~J) with possible dicho-
tomic outcomes * (identifying = = =*1). The correlation
function between results of the parity measurement 0 at
different times #, and #, is C;; = pyqy+ + p_qg_|- —
P+q—|+ — P—q+|—, where p, (p_) is the probability for
measuring + (—) at ¢, and g is the probability for
measuring [ at t, given that k was measured at ¢; (k, [ =
+, —). Furthermore, p, =1—p_ zi((QA,l)—i- 1), g4+ =
1—q_ |+ = %((le)i + 1). Here, (Q,l> is the expectation
value of Q at t;, and (Q,2>i is the expectation value of Q at
t, given the outcome * at f4.

Using p(n) = U, p(O)UF = p(0), we find (Q,) =
Tr[p(t;)0] = 0. The approximate sign is accurate for
half integer j and in the macroscopic limit j >> 1, which
is assumed from now on. Hence, as expected, we have
P+ = % Depending on the measurement result at ¢;, the
state is reduced to P (t;) = P p(t)) P+ /Tt P+ p(t)) P ]=
(1+=0)/2j+1) with P, = ;1= Q) the projection
operator onto positive (negative) parity states. Denoting
Ar=1t,—t, and 6=wAr, we obtain <Qt2>t =
T Usp= (1)UL, 01 = £Ti 2]/ (2 + 1) = sin[(2) +
1wAt]/(2j + 1)sin[wAt]. From (Q,2>+ = _<Qt2>—’ it fol-
lows g4+ + g4 = 1. Using this and p, = %, the tem-
poral correlation becomes C;, = (Q,Z)+. With equidistant
times, time distance At, and the abbreviation x = (2 +
1)wArt, the Leggett-Garg inequality (1) reads

3sinx  sin3x
= <

=2 )

X 3x

The sine function in the denominator was approximated,

assuming ij—+l < 1. Inequality (4) is violated for all posi-

tive x =< 1.656 and maximally violated for x = 1.054
where K = 2.481 (compare with Ref. [6] for the violation
of local realism). We can conclude that a violation of the
Leggett-Garg inequality is possible for arbitrarily high-
dimensional systems and also for totally mixed states,
given that consecutive values of m can be resolved.

In the second part of the Letter, we will show that
inaccurate measurements not only lead to validity of mac-
rorealism but even to the emergence of classical physics.

In quantum theory, any two different eigenvalues m; and
m, in a measurement of a spin’s z-component correspond
to orthogonal states without any concept of closeness or
distance. The terms “‘close’ or “distant’” only make sense
in a classical context, where those eigenvalues are treated
as close which correspond to neighboring outcomes in the
real configuration space. For example, the ‘“‘eigenvalue
labels” m and m + 1 of a spin observable correspond to
neighboring outcomes in a Stern-Gerlach experiment.
(Such observables are sometimes called classical or rea-
sonable [6,8].) It is those neighboring eigenvalues which
we conflate to coarse-grained observables in measurements
of limited accuracy. It seems thus unavoidable that certain
features of classicality have to be assumed beforehand.

In what follows, we will first consider the special case of
a single spin coherent state and then generalize the tran-
sition to classicality for arbitrary states. Spin-j coherent
states |9, @) [9] are the eigenstates with maximal eigen-
value of a spin operator pointing into the (¢, ¢)-direction,
where ¢ and ¢ are the polar and azimuthal angle, re-
spectively: 319, ©) = jlI9, ¢). At time ¢ = 0, let us con-

sider |1f}0) ¢0> = Zm(jij;n)l/zcostrm%Sinjfm%efimgoolm)

Under time evolution U, = e~ “"x, the probability that a
J, measurement at the time ¢ has the outcome m is
p(m, 1) = |(m|9, @)|> with cos? = sinwtsind, sing, +
coswt cost, where ¥ and ¢ are the polar and azimuthal
angle of the (rotated) spin coherent state |19, ¢) at time 7. In
the macroscopic limit, j >> 1, the binomial can be well
approximated by a Gaussian distribution

plm, ) = —=— e 12" )

with o = ,/j/2sin¥ the width and u = jcos® the mean.

Under the “magnifying glass” of sharp measurements,
we can see separate eigenvalues m and resolve the
Gaussian probability distribution p(m, t), as shown in
Fig. 1(a). Let us now assume that the resolution of the
measurement apparatus, Am, is finite and subdivides the
2j + 1 possible outcomes m into a smaller number of 2&—:11
coarse-grained “‘slots.” If the slot size is much larger than
the standard deviation o ~ \/j, i.e., Am > ./j, the sharply
peaked Gaussian cannot be distinguished anymore from
the discrete Kronecker delta,

Am > \/j : plm, 1) — S, > (6)
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J— . . A . A .
where /m is numbering the slots (from —j + S to j — S*in

steps Am) and @ is the number of the slot in which the
center w of the Gaussian lies, as indicated in Fig. 1(b). In
the limit of infinite dimensionality, j — oo, one can distin-
guish two cases: (1) If the inaccuracy Am scales linearly
with j, i.e, Am = O(j), the discreteness remains. (2) If Am
scales slower than j, i.e., Am = o(j) but still Am > \/j,
then the slots seem to become infinitely narrow. Pictorially,
the real space length of the eigenvalue axis, representing
the 2j + 1 possible outcomes m, is limited in any labora-
tory, e.g., by the size of the observation screen after a
Stern-Gerlach magnet, whereas the number of slots grows
with j/Am. Then, in the limit j — oo, the Kronecker delta
becomes the Dirac delta function, shown in Fig. 1(c),

Am> \[j & j—oo: p(m1)— 8(m—a). (7)

Under a fuzzy measurement, the reduced (projected)
state is essentially the state before the measurement. If
|9, ) is centered well inside the slot, the disturbance is
exponentially small. Only in the cases where it is close to
the border between two slots is the measurement invasive.
Assuming that the measurement times and/or slot positions
chosen by the observer are statistically independent of the
(initial) position of the coherent state, a disturbance hap-
pens merely in the fraction o/Am < 1 of all measure-

- M +J

FIG. 1. An initial spin-j coherent state |, ¢,) precesses into
the coherent state |4, ¢) at time ¢ under a quantum time
evolution. (a) The probability p(m, ) for the outcome m in a
measurement of the spin’s z-component is given by a Gaussian
distribution with width o and mean w, which can be seen under
the magnifying glass of sharp measurements. (b) The measure-
ment resolution Am is finite and subdivides the 2j + 1 possible
outcomes into a smaller number of coarse-grained ““slots.” If the
measurement accuracy is much poorer than the width o, i.e.,
Am > ./j, the sharply peaked Gaussian cannot be distinguished
anymore from the Kronecker delta 6, ; where 7 is numbering
the slots and @ is the slot in which the center u of the Gaussian
lies. (c¢) In the limit j — oo, the slots seem to become infinitely
narrow and &, ; becomes the delta function 8(m — ).

ments. This is equivalent to the already assumed condition
\/j < Am. Therefore, fuzzy measurements of a spin co-
herent state are largely noninvasive such as in any macro-
realistic theory, in particular, classical Newtonian physics.
Small errors may accumulate over many measurements,
and eventually there might appear deviations from the
classical time evolution. This, however, is unavoidable in
any explanation of classicality gradually emerging out of
quantum theory. To which extent this effect is relevant for
our everyday experience is an open issue [10].

Hence, at the coarse-grained level, the physics of the
(quantum) spin system can be described by a “‘new”
formalism, utilizing a (classical) spin vector J at t = 0,
pointing in the (9, ¢)-direction with length J = |J| =
JJj(G + 1) = j, where j > 1, and a (Hamilton) function

H=01/21+ oJ, (8)

At any time, the probability that the spin vector’s
z-component Jcosd = jcosd is in slot m is given by
O, > EQ. (6), as if the time evolution of the spin compo-
nents J; (i = x,y, z) is given by the Poisson brackets, J; =
[J;, Hlpg, and measurements are noninvasive. Only the
term wJ, in Eq. (8) governs the time evolution, and the
solutions correspond to a rotation around the x-axis. In the
proper continuum limit, the spin vector at time ¢ points in
the (1, ¢)-direction where ¥ and ¢ are the same as for the
spin coherent state, and the prediction is given by 8(m —
), Eq. (7). This is classical (Newtonian) mechanics.
Finally, we show that the time evolution of any spin-j
quantum state becomes classical under the restriction of
coarse-grained measurements. At all times, any spin-j
density matrix can be written in the diagonal form [12]

b= [fﬂ £09, ) 19, o)(9, ol &20 ©)

with d?Q = sindddde the solid angle element and
f(9, ¢)—usually known as P-function—a not necessarily
positive real function [normalization [, f(9, ¢)d*Q =1].

The probability for an outcome m in a J . measurement
in the state (9) is P(m)= [[q f(?, ©)p(m)d*Q, where
p(m) is given by Eq. (5). At the coarse-grained level of
classical physics, only the probability for a slot outcome
can be measured, i.e., P(m) = 3, e P(m) with {/n} the
set of all m belonging to 7. For Am > ./j and large j, this
can be well approximated by

_ 2 (9, (m)
P(m) ~ [ f A, @)sindddde,  (10)
0 & (m)

where 9,(m), 9,(m) are the borders of the polar angle
region corresponding to a projection onto m. We will
show that P(71) can be obtained from a positive probability
distribution of classical spin vectors. Consider

2j+1 G
e ff S, @) cos¥2 a2Q)'  (11)
9]

with d?>Q)’ = sin®’d®¥'d¢’ and O the angle between the

g(9, @)
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directions (9, ¢) and (¥, ¢’). The distribution g(9, ¢) is
positive (and normalized) because it is, up to normaliza-
tion, the expectation value (19, ¢|p|d, ¢) of the state
|9, @). It is usually known as the Q-function [13].

For fuzzy measurements with inaccuracy AQ® ~
D, (m) — 9,(m) > 1/./j, which is equivalent to Am >
\/J, the probability for having an outcome m can now be
expressed only in terms of the positive distribution g:

27 [ (m)
B() ~ f f (0, ) sindddde. (12
1im

The approximate equivalence of Eqgs. (10) and (12) is
shown by substituting Eq. (11) into (12). Note, however,
that g is a mere mathematical tool and not experiment-
ally accessible. Operationally, because of Am > ./j, an
averaged version of g, denoted as 4, is used by the experi-
menter to describe the system in the classical limit.
Mathematically, this function /% is obtained by integrating
g over solid angle elements corresponding to the measure-
ment inaccuracy. Without the “magnifying glass,” the
regions given by the experimenter’s resolution become
“points” on the sphere where #/ is defined. Thus, a full
description is provided by an ensemble of classical spins
with the probability distribution h.

The time evolution of the general state (9) is determined
by (3). In the classical limit, it can be described by an
ensemble of classical spins characterized by the initial
distribution g (h), where each spin is rotating according
to the Hamilton function (8). From Eq. (12), one can see
that for the noninvasiveness at the classical level, it is the
change of the g (h) distribution which is important and not
the change of the quantum state or equivalently f itself. In
fact, upon a fuzzy J . measurement the state, p is reduced to
one particular state, say to p;, with the corresponding
(normalized) functions f, g, and h,;. The reduction to
P happens with probability P(/), which is given by
Eq. (10) or (12). Whereas f can change dramatically
upon reduction, g,; is (up to normalization) approximately
the same as g in the region () between two circles of
latitude corresponding to the slot 7z and zero outside. If
On = > megmylm)(m| denotes the projector onto the slot 7z,
then Q,;|9, @) is almost zero (|9, ¢)) for all coherent states
outside (inside) Q. Thus, g < (I, @|pzlD, @)
(9, 0105050, @) = (9, @|pl D, @) = g inside and al-
most zero outside. Hence, at the coarse-grained level, the
distribution g (h,;;) of the reduced state after the measure-
ment can always be understood approximately as a sub-
ensemble of the (classical) distribution g before the
measurement. Effectively, the measurement only reveals
already existing properties in the mixture and does not alter
the subsequent time evolution of the classical spins.

The disturbance at that level is quantified by how much
g, differs from a function which is (up to normalization) g
within {; and zero outside. One may think of dividing all
g distributions into two extreme classes, i.e., the ones
which show narrow pronounced regions of size compa-

rable to individual coherent states and the ones which
change smoothly over regions larger or comparable to
the slot size. The former is highly disturbed but in an
extremely rare fraction of all measurements. The latter is
disturbed in general in a single measurement but to very
small extent, as the weight on the slot borders (<./j) is
small compared to the weight well inside the slot (< Am).
(In the intermediate cases, one has a tradeoff between these
two scenarios.) The typical fraction of these weights is
Jj/Am < 1. Thus, in any case, classicality arises with
overwhelming statistical weight.

Conclusion.—We showed that the time evolution of an
arbitrarily large spin cannot be understood classically, as
long as consecutive outcomes in a spin component mea-
surement are resolved. For certain Hamiltonians, given the
limitation of coarse-grained measurements, not only is
macrorealism valid, but even the Newtonian time evolution
of an ensemble of classical spins emerges out of a full
quantum description of an arbitrary spin state—even for
isolated systems. This suggests that classical physics can
be seen as implied by quantum mechanics under the re-
striction of fuzzy measurements.
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