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We determine from first principles the finite-temperature properties—linewidths, line shifts, and
lifetimes—of the key vibrational modes that dominate inelastic losses in graphitic materials. In graphite,
the phonon linewidth of the Raman-active E2g mode is found to decrease with temperature; such
anomalous behavior is driven entirely by electron-phonon interactions, and does not appear in the nearly
degenerate infrared-active E1u mode. In graphene, the phonon anharmonic lifetimes and decay channels
of the A01 mode at K dominate over E2g at � and couple strongly with acoustic phonons, highlighting how
ballistic transport in carbon-based interconnects requires careful engineering of phonon decays and
thermalization.
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Carbon nanotubes and graphene nanoribbons are in-
tensely studied as candidates for future electronic and
optoelectronic devices. In particular, metallic tubes have
some of the highest current densities reported in any ma-
terial [1] and could lead to extremely promising applica-
tions as electrical interconnects. However, in carbon
nanotubes or graphite, high currents [2–4] or optical ex-
citations [5,6] can induce a nonthermal phonon distribu-
tion, with significant overpopulation of the optical phonons
E2g at � and A01 at K. These hot phonons develop because
of a slower anharmonic decay rate with respect to the
generation rate [4], and cause a significant reduction of
the ballistic conductance of carbon nanotubes at bias po-
tentials larger than �0:2 V, severely limiting interconnect
performance [1–4]. A microscopic characterization of
phonon decays [7] is thus a key step in improving the
transport properties of these materials, whereas engineer-
ing individual decay channels would allow to control en-
ergy relaxation and ultimately performance.

Information on the phonon scattering mechanisms can
be obtained from Raman or infrared (IR) measurements of
the linewidths and line shifts of the phonon modes [8].
Indeed, the intrinsic linewidth �in in a defect-free sample is
�in � �e-ph � �ph-ph, where �e-ph and �ph-ph represent the
electron-phonon (e-ph) and anharmonic phonon-phonon
(ph-ph) interactions [9,10]. The shift with temperature of
the harmonic phonon frequencies is also due to ph-ph
interactions [8,11,12]. While experimental measurements
are now available on graphene, graphite, and carbon nano-
tubes, their interpretation is not always straightforward.
For example, graphene has a E2g at � Raman-active
mode (the G band) with a linewidth of �13 cm�1 [13].
In graphite this phonon splits in two nearly degenerate
modes: the Raman-active E2g and the IR-active E1u [14].
The linewidth of the Raman-active mode (11:5 cm�1 [15])
remains similar to that of graphene, suggesting a negligible
effect of the interactions among different graphitic planes.
On the other hand, IR measurements show that the line-

width of the E1u mode is much smaller (�4 cm�1 [14]).
The finite-temperature line shift of E2g is also puzzling:
recent experimental results have shown very little differ-
ence between graphite and graphene [16], while first-
principles calculations find a room-temperature in-plane
thermal-expansion coefficient for graphene more than 3
times as large as that of graphite (both are negative) [17].
Prompted by these results, and by the central role played by
phonon decays in controlling inelastic losses, we character-
ize here the e-ph and ph-ph scattering parameters of the
E2g, E1u, and A01 modes in graphite or graphene using state-
of-the-art first-principles calculations. These parameters
are then used to compute the linewidths and line shifts of
the Raman and IR bands, and the ph-ph decay lifetimes.

All the calculations are performed using density-
functional theory (DFT) and density-functional perturba-
tion theory (DFPT) [18] as implemented in the PWSCF

package of the QUANTUM-ESPRESSO distribution [19]. We
use the local-density approximation [20], norm-conserving
pseudopotentials [21], and a plane-wave expansion up to a
55 Ry cutoff. Brillouin-zone sampling is performed on
32� 32� 8 and 32� 32� 1 Monkhorst-Pack meshes
for graphite and graphene, with a Fermi-Dirac smearing
in the electronic occupations of 0.02 Ry. For graphite, the
equilibrium lattice parameters a � 2:43 �A and c=a �
2:725 are used [17]; for graphene, an interlayer spacing
of 7 Å is adopted. The DFT accuracy in calculating vibra-
tional properties in graphite even in the presence of
van der Waals interactions is discussed in Ref. [17]. The
phonon frequencies, dynamical matrices, and e-ph matrix
elements are obtained using DFPT. The phonon anhar-
monic self-energy is given, at the lowest order in the
perturbative expansion with respect to the atomic mass,
by the tadpole, loop, and bubble diagrams [22] correspond-
ing to three- and four-phonon scattering terms. Thus, we
calculate the third- and fourth-order derivatives of the total
energy with respect to atomic displacements; the former
are obtained from DFPT [18,23], while the latter from
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finite differences over the relevant phonon eigenvectors.
The dynamical matrices are computed on a 16� 16� 1 or
a 8� 8� 4 mesh (for graphene and graphite, respec-
tively), higher-order derivatives on 4� 4� 1 or 4� 4�
2 meshes. Fourier interpolation [18] then provides all these
quantities on finer grids (200� 200� 50 and 200�
200� 1 for graphite and graphene), over which we per-
form all numerical integrations.

At the lowest order, a phonon acquires a finite linewidth
by decaying into two lower-energy phonons (�ph-ph) or by
creating an electron-hole pair (�e-ph). The ph-ph contribu-
tion �ph-ph is given by the imaginary part of the phonon
self-energy � [8,22], which is determined by 3-phonon
scattering processes. In the electron-hole creation process,
a phonon with wave vector q excites an electronic state
jkii with wave vector k into the state j�k� q�ji. The
scattering probability is thus given by the e-ph coupling
matrix element g�k�q�j;ki [24]. According to the Fermi
golden rule [25]

 �e-ph
q �T� �

4�
Nk

X
k;i;j

jg�k�q�j;kij
2�fki�T� � f�k�q�j�T�	

� ���ki � ��k�q�j � @!q	; (1)

where !q is the phonon frequency, the sum is on Nk k
vectors, fki�T� is the Fermi-Dirac occupation at tempera-
ture T for an electron with energy �ki, and � is the Dirac
delta [26] [throughout the Letter we will consider full
width at half maximum (FWHM) linewidths].

We report in Fig. 1 the linewidths for the E2g and E1u

modes in graphite and graphene, computed according to
the aforementioned procedure. Very good agreement is
found with respect to measurements [13–15]. More im-

portantly, our calculations show that the phonon linewidth
for the E2g mode, and its dependence on temperature, is
completely dominated by the e-ph coupling, with a de-
creasing linewidth as a function of temperature. This effect
is due to the strong T dependence of �e-ph, which is only
partially compensated by �ph-ph.

In order to rationalize this result, we consider a simpli-
fied model for the temperature dependence of �e-ph for the
E2g modes: we assume a linearized band dispersion around
the Fermi energy (�F) and a model e-ph coupling [24]. It
can be easily shown (e.g., following Eq. 3 in Ref. [15]) that
at finite T

 �e-ph�T� � �e-ph�0�
�
f
�
�

@!0

2kBT

�
� f

�
@!0

2kBT

��
; (2)

where, from DFT, �e-ph�0� � 11:01 cm�1 [15], @!0 �
196 meV is the E2g phonon energy, kB is the Boltzmann
constant, and f�x� � 1=�exp�x� � 1	. Equation (2) repro-
duces very well the full calculation of Eq. (1) (see Fig. 1)
and can be used to understand the temperature dependence
of �e-ph�T�, since this is now proportional to the difference
between the occupations of states below and above �F. As
T increases, the occupation of filled states below �F de-
creases, while the empty states are occupied more, result-
ing in the observed decrease of �e-ph�T� with temperature.

It is important to note that �e-ph�0� for the E1u mode in
graphite is almost 5 times smaller than for the case of E2g.
This difference can be understood by decomposing Eq. (1)
in parallel and perpendicular contributions, where k? is
the component perpendicular to the graphene planes and
kk is the in-plane projection. We define ��k?� as the
contribution to the e-ph linewidth obtained from Eq. (1)
when restricting the k-point integration on those vectors k
that satisfy ĉ 
 k � k?, where ĉ is the unit vector perpen-
dicular to the graphene planes. With such definition
�e-ph �

R
1
0 ��k?�dk?, where k? is in units of �=c. The

electronic states with a nonzero contribution to Eq. (1) are
those allowed by energy conservation and by a nonzero
e-ph coupling. Energy conservation alone selects the four
� bands near the Fermi level (labeled 1 to 4, from the
lowest to the highest, in Fig. 2). For the E1u mode the
computed e-ph coupling allows mainly transitions from
band 1 to 3 and from band 2 to 4. Since the minimum gap
between bands 1 and 3 (and 2 and 4) varies considerably as
a function of k?, and the IR transition satisfies energy
conservation only for k? * 0:8 (Fig. 2), we have a small
�e-ph for this mode. On the contrary, for the E2g mode the
e-ph coupling allows mainly transitions from band 1 to 4
and from band 2 to 3; energy-conservation means that only
the transition between 2 and 3 is essentially active. Since
the minimum gap between bands 2 and 3 is always zero,
the transition is active for any k?. It turns out that �E2g

�k?�
is almost a constant and its value is similar to that of
graphene (Fig. 2) and much larger than that for the IR-
active mode (�e-ph

E2g
� 5�e-ph

E1u
). Interestingly, the IR-active

 

0 200 400 600 800
Temperature (K)

0

2

4

6

8

10

12

14

lin
ew

id
th

 F
W

H
M

 (
cm

-1
) Graphene-E2g

(Raman active)

 
Graphite-E2g

(Raman active)

 

0 200 400 600 800
Temperature (K)

0

2

4

6

8

10

lin
ew

id
th

 F
W

H
M

 (
cm

-1
) Graphite-E1u

(IR active)γ ep+γ pp

γ ep

γ pp

γ ep from Eq.2

   Experimental

FIG. 1. Total linewidths (solid line) for the E2g and E1u modes
in graphene and graphite and their e-ph (�e-ph, dashed line) and
ph-ph (�ph-ph, dotted line) contributions, together with the results
of Eq. (2) (circles). Measurements from Refs. [13–15].
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mode of a graphene bilayer should have a vanishing �e-ph,
since the bilayer bands are very similar to those of graphite
with k? � 0.

The temperature-dependent line shift is another quantity
that is easily accessible by, e.g., Raman spectroscopy, and
that provides powerful information on the anharmonicity.
The ph-ph contribution to line shifts is given by the real
part of the self-energy � [22]; as mentioned before, at the
lowest order this includes both 3-phonon and 4-phonon
scattering terms. A further contribution descends straight-
forwardly from the lattice thermal expansion that is espe-
cially large and negative in graphene [17]. This
contribution is obtained by computing the harmonic fre-
quency at the lattice parameter appropriate to the given
temperature, obtained within the quasiharmonic approxi-
mation [17]. Within the present approach the e-ph contri-
bution to the frequency shift is taken into account exactly
(within DFT) in the harmonic frequencies [18].

Figure 3 shows our computed line shifts for the E2g

mode [27]. The results are in good agreement with avail-
able experiments [28,29], and in excellent agreement with
recent measurements for graphite and graphene [16]. In
both cases the frequencies shift down with temperature—
an unusual result for an optical mode where the bond-bond
distances are predicted to become shorter with tempera-
ture. In reality, lattice contraction does provide the ex-
pected upward shift—and a much larger one for
graphene than for graphite. Still, the overall behavior is
dominated by a downshift driven by the 4-phonon scatter-
ing term, almost 2 times stronger in graphene than in
graphite (Fig. 3). Thus, while the individual anharmonic
contributions in graphite and graphene are quite different,
the E2g line shifts are always downward (driven by the
4-phonon contributions) and very similar in the two sys-
tems thanks to the compensation between different but
opposite contributions.

Finally, we focus on the analysis of the anharmonic
phonon decay processes. We show in Fig. 4 the anharmonic
phonon lifetimes (� � 1=�ph-ph) and the decay channels
for the modes E2g at � and A01 at K in graphene—these are
the two modes with the strongest e-ph coupling, and the
ones that will be overpopulated during steady-state opera-
tion in an interconnect [4] (the results for graphite are very
similar; see Fig. 1). The values obtained are of the same
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order of the optical-phonon thermalization time (7 ps)
estimated in graphite from time-resolved terahertz spec-
troscopy [5]. This result is also in agreement with the
empirical choice of Ref. [4] where the experimental I–V
characteristic of metallic-tube interconnects was modeled
by a coupled Boltzmann transport equation for phonons
and electrons, assuming �� � �K � 5 ps. The values of ��

and �K that we obtain from first-principles confirm this
assumption, but provide much needed novel insight on the
relative relevance of the different decay processes. In
particular, it is found that �K > �� (Fig. 4); in addition,
since the e-ph coupling for the K mode is stronger than for
� [4], we find that the phonon population at K will be
dominant in determining inelastic losses, with the high-
bias resistivity due to scattering with K phonons.
Moreover, �K has a large decay channel toward low-energy
acoustic phonon modes (Fig. 4, bottom right panel) that is
not available to � phonons. This means that a strong
temperature dependence is present in the typical operation
range of 100–500 K, and that the population of acoustic
phonons can strongly affect hot phonons and transport
properties. Since acoustic phonons have a lower thermal-
impedance mismatch with the substrate, it is expected that
efficient thermalization strategies should focus on engi-
neering the optimal coupling with the substrate. The
present results and inclusion of acoustic phonons in the
model of Ref. [4] should provide a realistic ab initio de-
scription of the coupled electronic and thermal dynamics in
carbon nanostructures [30].

In conclusion, we have presented a detailed analysis of
anharmonic effects in graphene and graphite, based on the
explicit calculation of the ph-ph and e-ph interactions
within DFPT. Excellent agreement with experimental re-
sults—where available—is found. We have explained the
large differences in the linewidths for the closely related
Raman and IR G bands in graphite, and the closely similar
line shifts for the G band in graphene and graphite, not-
withstanding very different thermal-expansion parameters.
Moreover, the anomalous decrease of the Raman G band
linewidth with temperature, predicted for both graphene
and graphite, is rationalized through its dominant e-ph
contribution; the negative dependence on temperature is
accurately captured by a simple phenomenological expres-
sion. The ph-ph decay channels for the critical vibrational
excitations that limit ballistic transport have been identi-
fied, with fundamental consequences in understanding and
engineering electronic transport in metallic nanotubes and
graphene ribbons interconnects.
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