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We study the Saffman-Taylor instability in a granular suspension formed by micrometric beads
immersed in a viscous liquid. When using an effective viscosity for the flow of the suspension in the
Hele-Shaw cell to define the control parameter of the system, the results for the finger width of stable
fingers are found to be close to the classical results of Saffman-Taylor. One observes, however, an early
destabilization of the fingers that can be attributed to the discrete nature of the individual grains.
Classically, the threshold of destabilization is linked to the noise in the cell and is thus difficult to
quantify. We show that the grains represent a ‘‘controlled noise’’ and produce an initial perturbation of the
interface with an amplitude proportional to the grain size. The finite amplitude instability mechanism
proposed by Bensimon et al. allows us to link this perturbation to the value of the threshold observed.
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Introduction.—When a low viscosity fluid like air dis-
places a viscous fluid in a thin channel or Hele-Shaw cell,
an instability develops at the interface, leading to the
formation of fingerlike patterns. The viscous fingering or
Saffman-Taylor instability [1] has received much attention
not only because of its practical importance but also since
it represents an archetype of many pattern forming systems
[2–4]. Driven by practical and fundamental interests, sev-
eral viscous fingering studies have lately been extended to
non-Newtonian fluids where a wide variety of strikingly
different patterns was found [5–7].

Here we study the Saffman-Taylor instability in a granu-
lar suspension, formed by micrometric polystyrene parti-
cles immersed in a silicon oil. Such suspensions are known
to exhibit non-Newtonian properties such as, for example,
normal stresses [8,9] or migration of particles toward zones
of low shear rate [10,11]. Surprisingly we find that devia-
tions from the classical finger width selection are small for
a large number of experimental conditions when consider-
ing an effective viscosity for flow of the suspension in the
confined geometry of the Hele-Shaw cell.

However, when increasing the finger velocity one ob-
serves an early destabilization of the fingers. For the clas-
sical Saffman-Taylor instability this has so far been
attributed to the noise in the cell making it difficult to
predict an exact threshold for this instability [12,13]. A
mechanism for this destabilization was suggested theoreti-
cally [4] but has to our knowledge not been proven experi-
mentally. We show that the individual particles immersed
in the viscous liquid play the role of a controlled noise
which allows us to study the mechanism of destabilization
of the fingering patterns in detail and to link it to the
theoretical predictions.

Setup and characterization of the suspensions.—The
experiments are performed in an Hele-Shaw cell of length
1 m formed by two 1.5 cm thick glass plates separated by a
thin mylar spacer (Fig. 1). The cell thickness b can be

varied (b � 0:75–1:43 mm), as can the width W of the
channel (W � 2–4 cm). The thin channel is initially filled
with a granular suspension that is then displaced by air. The
suspensions are formed by spherical polystyrene beads
from Dynoseeds with different grain diameters D � 20,
40, 80, or 140 �m and density � � 1050–1060 kg=m3.
The grains are dispersed in a modified silicon oil (Shin Etsu
SE KF-6011), such as to obtain density matching at a value
� � 1070 kg=m3. We measured the viscosity of the pure
fluid �0 � 191 mPa � s as well as its surface tension � �
21� 1 mN=m at 21 �C. Note that the surface tension is not
altered by the addition of grains. We have work with
varying volume fractions, but remain below 40%, which
allows us to avoid jamming problems and wall slip occur-
ring at higher volume fractions.

A constant overpressure is applied at the inlet whereas
the outlet is maintained at atmospheric pressure. The ad-
vancing fingertip is observed using a CCD camera
mounted on a movable system which allows a manual
tracking of its position. The camera is coupled to a micro-

FIG. 1. Schematic drawing of the experimental setup. Evolu-
tion of a typical finger with increasing finger velocity (a)–(f).
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computer for direct image acquisition. Note that in this
configuration, the applied pressure gradient is not constant
and, therefore, the finger accelerates when propagating
through the cell. We have verified that this acceleration is
slow enough and does not influence the observed finger
properties (i.e., for a given tip velocity, we have no depen-
dence on the applied overpressure).

Stable fingers.—For Newtonian fluids, the width w of
the viscous fingers is determined by the capillary number
Ca � �U=�, which is the ratio of viscous to capillary
forces, U being the finger velocity, � the viscosity, and �
the surface tension of the fluid. More precisely, the relative
finger width � � w=W is a function of the dimensionless
control parameter 1=B � 12�W=b�2Ca, which involves the
cell aspect ratio. The mean flow (averaged over the cell
thickness) is governed by Darcy’s law which reduces far
away from the finger to: V � � b2

12�rP with rP being the
applied pressure gradient and V the flow velocity.

We characterize the stable fingers and seek to establish
the relevant control parameter for the system. A first step is
to measure the suspension viscosity as a function of vol-
ume fraction. Flow in the confined geometry of the Hele-
Shaw cell, where high gradients of shear rate are observed,
might lead to flow inhomogeneities due to migration of
particles towards zones of low shear rate [10]. We will thus
compare the viscosity extracted directly from Darcy’s law
characterizing the flow in the Hele-Shaw cell to the one
obtained from a commercial rheometer.

The suspension viscosities are obtained by rheological
measurements using a double Couette geometry rheometer
(Haake-RS600) of gap width 2� 0:25 mm and mean ra-
dius 20 mm. The gap width being small with respect to the
radius, the local shear rate in the gap can be considered as
uniform. In the range of shear rates tested ( _� �
0:1–100 s�1) corresponding also to the typical shear rates
of the Hele-Shaw experiments, the suspensions behave as a
Newtonian fluid with a viscosity �Rh��� well described by
models used in recent literature (as, for example, Zarraga
et al. [8]) [Fig. 2(a) open symbols]. These results confirm
that particle migration is indeed negligible and indicate the

absence of particle aggregation in the range of volume
fractions considered.

We investigate the rheology of our suspensions directly
in the Hele-Shaw cell. To do so, we systematically estab-
lish a Darcy’s law for all suspensions and cell geometries
considered. The details of the procedure can be found in
Refs. [14,15]. The results indicate the existence of an
effective viscosity specific for flow in a Hele-Shaw cell
�C���. This viscosity was found to be independent of the
cell geometry (i.e., b and W) as well as the grain diameter
D and is only function of the volume fraction �.

We found for increasing� an increasing deviation of �C
from the corresponding rheometer viscosity �Rh [Fig. 2(a)
close symbols]. The fact that �C is lower than �Rh could be
explained by the effect of particle migration to zones of
low shear rate [10], here in the middle of the gap. In this
case it has been observed that the flow profile deviates from
an ideal parabolic profile and evolves towards a flatter
profile [11], independent of V and solely dependent on
�. This should lead to a lower flow resistance and thus to a
lower effective viscosity. A steady profile is only reached
after a certain flow distance [11] below which we do not
consider our data.

We then systematically study the selection of the finger
width for stable fingers for different values of the volume
fraction �. Typical results are displayed on Fig. 2(b) and
2(c). The solid line represents the pure fluid measurements
and thus corresponds to the classical result for Newtonian
fluids. Importantly, we choose �C��� to define the control
parameter 1=B � 12�W=b�2��CU=��. We notice that this
choice rescales our data well when the ratio between the
cell thickness and the grain diameter is larger than approxi-
mately 10. Below b=D	 10 significant deviations from
the classical result appear: fingers are slightly larger for
low 1=B, thinner for intermediate 1=B—this narrowing is
more important for large volume fraction—and then �
seems to join the classical curve for larger values of 1=B.

The details of the selection mechanism of the viscous
fingers can so far not be explained and are outside of the
scope of this Letter. However, in all cases, for large 1=B the

FIG. 2. (a) Relative viscosity of the suspensions (D � 80 �m) as a function of the grain fraction � obtained from rheological
measurements �Rh���=�0 (�) and from flow in the Hele-Shaw cell �C���=�0 (�). The solid line represents the prediction of Zarraga
et al. [8]. (b) and (c) Relative finger width � as a function of 1=B � 12�W=b�2��CU=�� for the same suspensions. Cell width W �
4 cm and cell thickness b � 1:43 mm (b) and b � 0:75 mm (c). The solid line represents the results for pure fluid.
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classical results of Saffman and Taylor are recovered and
the fingers can thus at this stage be considered as ‘‘normal’’
viscous fingers.

Finger destabilization.—When increasing the finger ve-
locity and thus the control parameter 1=B even further one
observes a destabilization of these normal fingers. First, the
sides of the fingers start to undulate and when the velocity
is further increased, the finger becomes unstable by tip
splitting. A typical evolution of such a destabilization can
be seen in Fig. 1. Note that in some cases asymmetric
fingers (not shown here) like those predicted by
Ben Amar et al. [16] are observed.

This destabilization scenario is also observed in classical
Saffman-Taylor experiments and has so far been attributed
to the noise in the cell, hence making it difficult to predict
exact values for this instability threshold [12,13]. In the
case of our suspension, we measure the fluctuations �� of
the finger width by image processing [Fig. 3(a)] and detect
the onset of growth of these fluctuations [Fig. 3(b)] defin-
ing the stability threshold and, therefore, the critical con-
trol parameter 1=Bc.

When plotting the values of 1=Bc against grain fraction
(Fig. 4) for two different set ups (different cell thickness,
same grain size), we surprisingly find that as soon as a
small amount of grains (as small as 1%) is added, the value
of the threshold drops strongly and thereafter is constant
within the experimental uncertainties. We find different
values for the threshold in pure fluid for the different
configurations and thus two different intrinsic levels of
noise. However, in the presence of grains the value of the
threshold is well defined.

When looking closer at the destabilization scenario of a
single finger (Fig. 4 inset), one observes that perturbations
nucleate close to the fingertip and are then advected to the
side of the finger. A possible explanation for this destabi-
lization mechanism was given by Bensimon et al. [4]. They
proposed that a perturbation nucleates at the fingertip,
where the normal velocity is the highest and where the
growth rate (given by the linear stability analysis of the
Saffman-Taylor problem [17]) is the largest. While the
finger continues to grow, the perturbation is advected to

the side of the finger where the normal velocity goes to
zero and, thus, the perturbation growth stops. In the process
of advection, the perturbation is stretched and, conse-
quently, its amplitude is decreased. For a given control
parameter 1=Bc, one needs a given, finite amplitude of
the initial perturbation Ai to be able to obtain a perturbation
with a given final amplitude Af when the side of the finger
is reached. More quantitatively, Bensimon et al. derived
the following relation that describes the ‘‘finite amplitude
instability’’:

 Af 
 Ai exp�0:106 1=B1=2
c �: (1)

In the following, we test if the destabilization observed
in our situation can be described by this mechanism and if
the existence of grains in the viscous fluid can be directly
linked to the instability onset. A first indication is that we
observe a destabilization threshold hardly affected by an
increase of the grain fraction; the above described mecha-
nism is indeed independent of the wavelength of the per-
turbation which one might be tempted to link to the grain
fraction. In their theoretical approach, Bensimon et al. [4]
considered the final amplitude Af to be proportional to the
channel width W. For our analysis, we directly use the
value of the fluctuations of the finger width �� observed at
1=Bc. Those are of course via the finger width proportional
to W and we consider a sinusoidal form of the fluctuations
leading to Af � ��W2

���
2
p

. A natural assumption is to
relate the amplitude of the initial perturbation Ai to the
grain diameterD: Ai / D. We have performed experiments
for different grain sizes D and different cell widths W.
When we plot

�����������
1=Bc

p
as a function of ln�Af=D� obtained

for� � 10%, different cell geometries, and different grain
sizes (Fig. 5), we obtain a very satisfying quantitative
agreement with the theoretical result of Bensimon et al.,
when the only free parameter, the amplitude of the initial
perturbation, is taken to be Ai 
 D=20. Unfortunately,

FIG. 3. (a) Image processing and measurement of the fluctua-
tion of the relative finger width. (b) �� as a function of 1=B for
pure fluid (�) and a suspension (�) (� � 10%, D � 80 �m) in
a cell geometry of W � 4 cm b � 1:43 mm. The arrow indi-
cates the stability threshold 1=Bc.

FIG. 4. Control parameter 1=Bc at the stability threshold as a
function of grain fraction �. D � 80 �m, W � 4 cm, b �
0:75 mm (�) and b � 1:45 mm (�) (not shown here: 1=Bc >
15000 for pure fluid). Inset: Localization of the perturbation (�)
during a typical experimental finger destabilization.
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experimental limitations on grain size and cell width do not
allow us to extend the range of ln�Af=D� further with our
setup.

Now, we need to show that a particle approaching a free
interface at a stagnation point flow (Fig. 5 inset), as is the
case of the fingertip, is indeed able to deform this interface
with the correct amplitude. Hoffman [18] and Montiel
et al. [19] established a link between the free interface
amplitude of perturbation and a capillary number defined
on the scale of a particle: Cap �

2
3
D
b Ca. In our case, the

range of capillary numbers is Cap � 5� 10�3–2� 10�2

and, thus, the corresponding values for the amplitude of the
perturbation are of order of 0:02–0:1�D. Therefore, this
is indeed in good agreement with our result for the ampli-
tude of the initial perturbation and it confirms the validity
of the theoretical prediction of Bensimon et al. [4]. The
grains of the suspension act here as a controllable noise
amplitude.

Conclusion.—We have studied the destabilization of
Saffman-Taylor fingers in a granular suspension. We
have shown that the grains perturb the interface between
the air and the suspension and lead to a premature destabi-
lization of the fingers. This local perturbation is a function
of the grain size and leads to lateral oscillations of the
finger with a fixed amplitude at a certain instability thresh-
old 1=Bc. This threshold is found to be in good agreement
with the theoretical predictions of Bensimon et al. given
for this finite amplitude instability. To our knowledge this
is the first time that an experiment allows to control the
initial ‘‘noise’’ in the cell, typically considered to be re-

sponsible for the destabilization, allowing in this way to
investigate directly this mechanism.

Recently a number of studies have reported oscillations
of the finger width, observed, for example, for low capil-
lary number [20] or fixed perturbations of the cell thickness
[21]. A more close characterization of the oscillations
resulting from the premature destabilization in our system
might reveal similarities between the different systems.
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FIG. 5 (color online). Experimental values (�) and theoretical
prediction from Bensimon et al. (solid line). Experiments per-
formed by changing the grain diameter D � 20, 40, 80, and
140 �m, the cell thickness b � 0:75–1:43 mm and the cell
width W � 2–4 cm. Additional experiments (�) using a differ-
ent silicon oil (Dow Corning 704). Inset: Schematic drawing of a
particle approaching a free interface in a stagnation point flow.
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