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We report the existence of exceptional points for the hydrogen atom in crossed magnetic and electric
fields in numerical calculations. The resonances of the system are investigated and it is shown how
exceptional points can be found by exploiting characteristic properties of the degeneracies, which are
branch point singularities. A possibility for the observation of exceptional points in an experiment with
atoms is proposed.
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The appearance of the coalescence of two eigenstates,
so-called exceptional points [1], in physical systems de-
scribed by non-Hermitian matrices has attracted growing
interest [2–6]. Typical systems in which such a phenome-
non can occur are open quantum systems with decaying
unbound states. One possibility to describe these open
quantum systems are non-Hermitian Hamiltonians ob-
tained with the complex rotation method [7]. In this case,
the resonances appear as complex eigenvalues whose real
and imaginary parts are connected with the energy and the
resonance width, respectively. The eigenvectors have not to
be orthogonal in contrast to Hermitian Hamiltonians de-
scribing bound states in quantum mechanics. In particular,
it is possible that the eigenspace for two degenerate eigen-
values is only one dimensional, i.e., there is only one linear
independent eigenvector. If the system of interest depends
on a complex parameter � (or two real parameters), a
branch point singularity of two eigenstates can appear at
critical parameter values �c, which are called exceptional
points. Exceptional points have been discovered in a broad
variety of physical systems. Among them are acoustical
systems [8], atoms in optical lattices [4,9], and complex
atoms in laser fields [10]. Detailed experiments have been
carried out with resonances in microwave cavities [5,6,11].
However, up to now, exceptional points have not been
found in atoms in static external fields. The main reason
is that there is only one parameter in the cases studied most
intensely, viz., atoms either in a magnetic or in an electric
field. For the occurrence of exceptional points, the parame-
ter space has to be at least two dimensional, i.e., at least
two real parameters are required, which can be represented
by crossed magnetic and electric fields. Atoms in static
external magnetic and electric fields are fundamental
physical systems. As real quantum systems they are acces-
sible both with experimental and theoretical methods and
have been used for comparisons with semiclassical theo-
ries [12–14]. They are ideally suited to study the influence
of exceptional points on quantum systems; e.g., the occur-
rence of phenomena like Ericson fluctuations in photo-
ionization spectra has been demonstrated both in nu-
merical studies [15,16] and experiments [17].

In this Letter, we investigate numerically the resonances
of the hydrogen atom in static magnetic and electric fields
and report the first detection of exceptional points in this
system. The confirmation of the existence of exceptional
points supplements the richness of phenomena which have
been found in the spectra of atoms in static external fields.
Furthermore, we propose a method which can be used to
verify the existence of exceptional points in experiments.

Exceptional points can occur in systems which are de-
scribed by a non-Hermitian matrix and depend on one
complex parameter or two real parameters. At critical
parameter values �c, the eigenvalues and eigenvectors of
the matrix pass through branch point singularities [3,4,18].
This can easily be understood by studying the two-
dimensional matrix [1]

 M ��� �
1 �
� �1

� �
(1)

with the complex parameter �. The eigenvalues �1 ����������������
1� �2
p

and �2 � �
���������������
1� �2
p

are two branches of one
analytic function in �. An exceptional point occurs, e.g.,
for � � i, where the eigenvectors of the two degenerate
eigenvalues coalesce and the only linearly independent
eigenvector reads x�� � i� � �1; i�T . The branch point
singularity leads to a characteristic behavior of the corre-
sponding eigenvalues under changes of the parameters. If
one chooses a closed loop in the parameter space and
calculates the eigenvalues for a set of parameter values
on this loop, in general, the eigenvalues also traverse a
closed curve. However, when an exceptional point is en-
circled, two of the eigenvalues do not traverse a closed
loop. The two eigenvalues which degenerate at the excep-
tional point are permuted during the traversal of the circle
in parameter space [1]. This can be seen by plotting the
paths of the two eigenvalues in the complex energy plane.
After one circle, the first eigenvalue will travel to the
starting point of the second and vice versa, as illustrated
in Fig. 1. As a consequence, the path of one eigenvalue is
not closed if one traversal of the loop in parameter space is
performed. But the path is closed if the parameter space
loop is traversed twice.
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As one would expect, the eigenstates of the system are
permuted in the same way as the corresponding eigenval-
ues [1]. Additionally, after each circle around the excep-
tional point, one of the two eigenvectors changes its sign

[19], e.g., ��1;�2� ���!circle
��2;��1�. This phase change

continues with every additional loop. Therefore, four
circles are required to return to the initial states.

In this Letter we investigate exceptional points in the
hydrogen atom in static external fields. The Hamiltonian in
atomic units without relativistic corrections and finite nu-
clear mass effects [20] reads

 H �
1

2
p2 �

1

r
�

1

2
�Lz �

1

8
�2�x2 � y2� � fx; (2)

where Lz is the z component of the angular momentum,
and � and f are the field strengths of the magnetic and
electric fields oriented along the z and x axis, respectively.
The only constants of motion are the energy and the parity
with respect to the z � 0 plane. Here, we concentrate on
states with even z parity. One possibility to calculate the
resonances of the system is the complex rotation method
[7,21]. The coordinates of the system r are replaced with
the complex rotated ones rei# in the Hamiltonian and wave
functions. The transformation leads to a complex symmet-
ric matrix representation of the Hamiltonian. Introducing
dilated semiparabolic coordinates (see, e.g., [16] ) leads to
a generalized eigenvalue problem of the form

 A ��; f�� � �B� (3)

with a complex symmetric matrix A��; f�, a real symmet-
ric matrix B, and the generalized eigenvalue � � ��1�
2b4E�, where E is the energy and b a complex-valued
dilation parameter, which includes the complex rotation.
Above the ionization threshold, resonances are uncovered
as complex energies E. The computation of the eigenvalues
was performed by applying the ARPACK library [22] to
matrices with dimensions of about 10 000 to 12 300. The
algorithm uses the implicitly restarted Arnoldi method and

solves large scale sparse eigenvalue problems efficiently,
even for non-Hermitian matrices. In general, but not at the
exceptional points, the eigenvectors of the resonances can
be normalized such that h�ijBj�ji � �ij. The external
fields � and f are the two external parameters which
determine the eigenstates. Exceptional points do exist in
atomic spectra if the fields can be chosen in such a way that
a coalescence of two states occurs. The crossed field hydro-
gen system fulfills all necessary conditions for the appear-
ance of exceptional points; however, one has to find them
in the spectrum to prove their existence.

In practice, it is very difficult to look for exceptional
points by searching for degeneracies of two complex ei-
genvalues. The variation of the parameter values � and f
does not lead to clear indications for degeneracies, and, it is
not known in advance which parameter values are a good
choice for starting the search. However, the method of
encircling a point in the (�, f) plane and searching for
eigenvalues which are permuted has been very successful.
A good choice for such a closed loop is a ‘‘circle’’ in the
parameter space of the two field strengths with a radius a <
1 chosen relative to the center (�0, f0):

 ��’� � �0�1� a cos’�; f�’� � f0�1� a sin’�: (4)

The phase change of one of the eigenfunctions after a
circle around an exceptional point can be seen as a sign
change of an arbitrary matrix element p12 � h�1jMj�2i.
We chose M � 1, i.e.,

 pij � h�ij�ji; (5)

which can be obtained easily in our calculations and is not
diagonal for the eigenstates which fulfill the orthogonality
relation h�ijBj�ji � �ij mentioned above.

With the method described, exceptional points have
been found for the first time in the spectrum of the hydro-
gen atom in static external fields. Figure 2(a) shows a
typical result obtained in a numerical calculation. The
squares and the diamonds represent one of the eigenvalues
at different field strengths, respectively. In this example,
using 20 steps on the circle in parameter space has been
sufficient to obtain a clear signature of the branch point
singularity. The ‘‘radius’’ of the circle according to Eq. (4)
was a � 0:01. This value is sufficiently large to have an
exceptional point inside the circular area with a high
probability and is small enough to track the paths of the
eigenvalues with a low number of calculations. Figure 2(b)
shows the position of the degenerate eigenvalues (marked
with an arrow) in the complex energy plane among the
resonances in their vicinity. For the loop shown in Fig. 2(a),
the matrix element p from Eq. (5) was calculated. The
phase of the complex value, plotted in Fig. 3, changes its
value by �. This clearly indicates a sign change for one of
the two eigenstates [19] as mentioned above.
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FIG. 1 (color online). (a) Circle in parameter space � with the
exceptional point �c � i as center point for the simple model
(1). (b) Eigenvalues �1;2 calculated for the parameter values from
(a) indicated by squares and diamonds, respectively. In this
special case, each of the two eigenvalues traverses a semicircle.
In (a), (b), the filled symbols represent the first parameter value
�0 and the corresponding eigenvalues �1;2��0�, respectively. The
arrows point in the direction of progression.
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Examples for parameter values of exceptional points and
the position of the degenerate eigenvalues in the complex
energy plane are given in Table I. The values were obtained
by minimizing the distance of two eigenvalues which in-
dicated a branch point singularity. The degeneracy of the
two eigenvalues, the existence of only one eigenvector, and

the permutation of eigenvalues were used to identify the
exceptional points.

In experiments, the complex eigenvalues cannot be ob-
tained directly. But it is possible to measure the photo-
ionization cross section and to extract the energy (real part
of a complex eigenvalue) and width (imaginary part) of the
resonances. The cross section can be written in the form
[23]

 ��E� � 4���E� E0�Im
�X
j

h��#�0 jDj�
�#�
j i

2

Ej � E

�
; (6)

where ��#�0 is the initial state with energy E0, which is
supposed to be known. The final state with complex energy
Ej is represented by ��#�j , D is the dipole operator for a
given polarization, and � is the fine-structure constant. The
superscript # on the initial and final states indicates the
angle of the complex rotation used in the calculation;
however, it is important to note that the cross section is
independent of that angle in converged spectra. The
Fourier transform c�t� (i.e., the time signal) of (6) has the
form c�t� �

P
jaj exp�iEjt� and, therefore, the complex

energies Ej can be obtained using the harmonic inversion
method [24] with a high precision. In this method, the
Fourier transform of the profiles in the photoionization
cross section is used to extract their complex amplitudes
aj and energies Ej by solving the nonlinear set of equations

 cn �
X
j

aj exp�iEjt�; n � 0; 1; . . . ; 2K � 1 (7)

for K values cn � c�tn� on an equidistant grid.
With this knowledge, a search for exceptional points in

an experiment starts with the measurement of the photo-
ionization cross section for different field strengths, which
are located on a closed loop in the (�, f) space, e.g., on a
circle of type (4). For each measurement, one obtains a
spectrum which is used to extract the complex energies of
the resonances. The energy values are drawn in a diagram.
After these steps, the same method which is used to search
for branch point singularities in numerical calculations can
be applied to the experimental results. The diagrams can be
used to look for the characteristic open curves of single
eigenvalues. Figure 4(a) shows an example of a typical
result for the photoionization cross section for different
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FIG. 3 (color online). Phase of the complex matrix element p
defined in Eq. (5). It changes its value by � during the traversal
of the circle in parameter space. The result corresponds to the
expected sign change.

TABLE I. Examples for exceptional points in the spectrum of
the hydrogen atom in crossed magnetic (�) and electric (f)
fields. All values in atomic units.

� f Re �E� Im �E�

0.00537 0.000 214 �0:01884 �0:000 067 9
0.00572 0.000 256 �0:01984 �0:000 258
0.00611 0.000 256 �0:01593 �0:000 24
0.00615 0.000 265 �0:0158 �0:000 374
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FIG. 2 (color online). (a) Paths of the two eigenvalues which
degenerate at the exceptional point in the complex energy plane.
The squares and the diamonds represent one of the eigenvalues,
respectively. Each point of one eigenvalue belongs to a different
set of parameters. The path in the field strength parameter space
is a circle defined in Eq. (4) with a � 0:01 (see inset). The first
set of parameters and the corresponding eigenvalues are repre-
sented by filled symbols. The arrows indicate the direction of
progression. The cross marks the position of the exceptional
point in parameter space and the corresponding complex energy
of the degenerate resonances. (b) Resonances in the complex
energy plane for the parameter values � � 0:00572 and f �
0:000 256 (atomic units) at the exceptional point. The position of
the two degenerate eigenvalues is marked with an arrow.
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field strengths which are located on a closed loop in the
parameter space. The loop encircles an exceptional point.
Although not experimental but theoretical photoionization
spectra have been used as input for the calculations, it is
obvious that it is possible to extract the complex energies
from a typical cross section as it is obtained in an experi-
ment. In Fig. 4(b) one can see the paths of complex
eigenvalues extracted from the spectra. In our example,
16 cross sections were used. This number is sufficient to
give a clear indication of an exceptional point as shown in
Fig. 4(b). The eight spectra in Fig. 4(a) look rather similar.
Note that the deviations become more pronounced when
the parameter space radius is increased. This may be help-
ful for the analysis of experimental spectra with noise.

In summary, we have found the first exceptional points
in numerical spectra of an atom in static external fields.
The branch point singularities can be detected by the
permutation of two eigenvalues when an exceptional point
is encircled in parameter space. Further properties of the

branch point singularities can be used to verify their ex-
istence. With the harmonic inversion method, it is possible
to extract the complex eigenvalues of resonances from
experimental photoionization cross sections and to detect
exceptional points in experimental data. This opens the
way for the experimental observation of exceptional points
in atomic spectra.
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FIG. 4 (color online). (a) Photoionization cross section of the
energy range in which two eigenvalues connected with an
exceptional point appear. The cross section is shown for eight
different pairs of parameter values � and f being located on a
circle around the exceptional point. All values in atomic units.
(b) Complex energy eigenvalues extracted from the cross sec-
tions with the harmonic inversion method. Each eigenvalue is
drawn with a different symbol. Altogether, 16 pairs of parameter
values were used. In (a), every second cross section is shown.
The signature of a branch point singularity connected with the
two eigenvalues labeled with squares and diamonds, respec-
tively, is clearly visible.
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