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We propose an implementation of the quantum search algorithm of a marked item in an unsorted list of
N items by adiabatic passage in a cavity-laser-atom system. We use an ensemble of N identical three-level
atoms trapped in a single-mode cavity and driven by two lasers. In each atom, the same level represents a
database entry. One of the atoms is marked by having an energy gap between its two ground states.
Appropriate time delays between the two laser pulses allow one to populate the marked state starting from
an initial entangled state within a decoherence-free adiabatic subspace. The time to achieve such a process
is shown to exhibit the

����
N
p

Grover speedup.
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One typical problem of quantum computation concerns
the search of a marked entry in an unsorted database by
accessing it a minimum number of times. The Grover
algorithm [1] achieves this task quadratically faster than
any classical algorithm. It is formulated in terms of a series
of quantum gates applied to a quantum register consisting
of a collection of qubits encoding the database entries. An
initial uniform superposition jwi, independent of the
searched state jmi, is rotated step-by-step under the action
of appropriate gates. The searched state is exhibited by an
oracle function which checks if a proposed input is the
searched state, returning for instance 1 in this case and 0
otherwise. The number of steps grows as N1=2 with N the
database size, whereas a classical algorithm requires on
average N=2 calls. This quantum circuit algorithm has
been tested experimentally for two qubits (N � 4) by
several techniques resting on NMR [2,3], optics [4,5],
and trapped ions [6]. There have also been proposals of
experimental implementations using cavity QED where
the quantum gate dynamics is provided by a cavity-assisted
collision [7] or by a strong resonant classical field [8].

A time-continuous version of the Grover algorithm has
been proposed by Farhi and Gutmann [9], who, instead of
using an explicit oracle, mark the searched state with an
energy E while the others are degenerate with energy 0,
and use a driving Hamiltonian that continuously leads the
initial state to the marked one. Choosing a Hamiltonian
V � Ejwihwj to drive the free system H0 � Ejmihmj, they
have shown that a Rabi-like half-cycle leads to the target
marked state in a time growing as N1=2=E. Note that the
Grover speedup is quadratic, independent of any increase
of E with N, which would simply amount to renormalizing
the time. An experimental realization of this analog Grover
algorithm has been performed by NMR [10] in a setting
where a quadrupolar coupling makes a spin 3=2 nucleus a
two-qubit system (N � 4).

Adiabatic versions of the time-continuous Grover algo-
rithm have been proposed [11–13] mainly to take advan-
tage of the robustness of adiabatic passage with respect to

fluctuations of the external control fields as well as to the
imperfect knowledge of the model. They have been for-
mulated with a Hamiltonian that connects adiabatically the
initial ground superposition jwi to the marked state jmi
through an avoided crossing: H � �1� u�t��Hi � u�t�Hf,
where Hi � I � jwihwj, Hf � I � jmihmj, and u�t� is a
function of time growing from 0 to 1. Roland and Cerf [13]
have shown that only a specific speed of the dynamics
controlled by u�t� allows one to achieve the transfer to
the marked state in a time growing as N1=2.

In this Letter, we show an implementation of the adia-
batic Grover algorithm based on a physical system, which
is in principle scalable. This is, to our knowledge, the first
proposed implementation of the adiabatic Grover algo-
rithm. It is formulated with a Hamiltonian H � H0�
V�t�, where H0 is considered as an oracle, and given, while
V�t� is slowly varying in time such that there is an instan-
taneous eigenvector adiabatically connecting the initial
superposition jwi to the marked state jmi. We use an
ensemble of N identical three-level atoms trapped in a
single-mode cavity of coupling frequency G and driven
by two lasers of Rabi frequencies � and �0. The atomic
levels are in a � configuration with two ground states jgi

FIG. 1. Linkage pattern for the individual atoms. The un-
marked atoms have two degenerate ground states jgi and jg0i.
One atom is marked with the state jg0i shifted in energy. The
laser of Rabi frequency �0 (�) is resonant with the g0-e
transition for the marked (unmarked) atom(s). The cavity of
Rabi frequency G is resonant with the g-e transition.

PRL 99, 170503 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
26 OCTOBER 2007

0031-9007=07=99(17)=170503(4) 170503-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.99.170503


and jg0i coupled to the excited state jei by, respectively, the
cavity and the two lasers (see Fig. 1). This can be realized
in practice by considering Zeeman states and laser and
cavity fields of appropriate polarizations. The states jg0i
of the N atoms are considered as the database entries. The
energy of the state jg0i of the marked atom is shifted by an
amount � with respect to that of the unmarked atoms,
which is set to zero. The states jgi allow for the coupling
of all the atoms through the exchange of a single photon
with the cavity [see Fig. 2(a)]. The initial state we shall
start from is the entangled state jwi� jg0;0i� �1=

����
N
p
�	PN

j�1 jg
0
j;0i, featuring a collective superposition of both

types of atomic ground states. Note that the label of each
atom is added as a subscript 1; . . . ; N and chosen so that the
marked atom has tag N. Such a state can be prepared for
instance before the marking of the atom using the stimu-
lated Raman adiabatic passage (STIRAP) technique [14],
exactly as shown in [15] to store single-photon quantum
states.

The process we introduce here allows one to drive
adiabatically the population from the entangled state
jg0; 0i, which corresponds to the superposition of both
the marked state jmi � jg0N; 0i and an unmarked collective
state jg0u; 0i that we introduce below, to the single marked
state jg0N; 0i [see Fig. 2(b)]. This process will be referred to
as an inverse fractional stimulated Raman adiabatic pas-
sage since it is a time inversion of the so-called fractional
STIRAP, which transfers the population from a single state
to a superposition of state [16]. This is implemented by first
switching on � and �0 together and next switching off �0

before �. The characteristic time to achieve such a process
will be shown to grow as

����
N
p

in order to satisfy
adiabaticity.

The Hamiltonian describing the system of N atoms is

 H0 � �jg0Nihg
0
Nj �!

XN
j�1

jejihejj: (1)

We consider a cavity mode of frequency ! and coupling
strength G together with two lasers of frequencies !, !�
� and pulse shapes ��t�, �0�t� which do not grow with N.
The resonant driving provided by the cavity-laser-atom
system is described by
 

V � !aya�Ga
XN
j�1

jejihgjj � ��e
i!t ��0ei�!���t�

	
XN
j�1

jg0jihejj � H:c: (2)

The full Hamiltonian H � H0 � V has a photonic block
diagonal structure. Each block is labeled by the number k
of photons in the cavity when the N atoms are in their
ground state jgi. The corresponding multipartite state
jg1 
 
 
 gNi � jki is denoted jg; ki. All the states that are
connected to jg; ki span a subspace whose projection op-
erator is Pk. As each block is decoupled under H from the
other ones, H �

P
k�0PkHPk, we shall focus on the block

P1HP1 associated with a single photon in the cavity and
show that it allows us to implement an adiabatic Grover
search algorithm.

The multipartite state jg; 1i is connected by (2) to ex-
actly two families of states as illustrated in Fig. 2(a). Upon
absorption of the cavity photon, the excited state jei of any
of the N atoms, say atom j, can be reached while the other
atoms remain in their ground state jgi; the corresponding
multipartite state is jej; 0i � jg1 
 
 
 gj�1ejgj�1 
 
 
i � j0i.
The state jej; 0i can also be reached by absorption of one
laser photon when any of the atoms, say atom j, is in the
ground state jg0i while the other atoms are in the ground
state jgi: jg0j; 0i � jg1 
 
 
 gj�1g0jgj�1 
 
 
 gNi � j0i. In or-
der to remove the oscillatory time dependence introduced
by the lasers, we consider atomic states that are dressed
by laser and cavity photons and use the resonant trans-
formation R�e�i�tjg0N;0ihg

0
N;0j�e

�i!tjeN;0iheN;0j �
e�i!tjg;1ihg;1j�

PN�1
j�1 �jg

0
j;0ihg

0
j;0j�e

�i!tjej;0ihej;0j�:
As we shall see, the states that are relevant for the Grover

search are the N � 1 states jg0j; 0i, which are unmarked
(since they do not involve the state jg0i of atom N), and the
state jg0N; 0i, which is marked. Among the unmarked
atoms, none should play a privileged role. Hence we shall
consider them collectively and label the corresponding
state with a subscript u. We rewrite the Hamiltonian in a
new basis which features the uniform superposition of the
unmarked ground states

 jg0u; 0i �
1�������������

N � 1
p

XN�1

j�1

jg0j; 0i; (3)

and the uniform superposition of the excited states asso-
ciated with the unmarked atoms

 jeu; 0i �
1�������������

N � 1
p

XN�1

j�1

jej; 0i: (4)

In this basis, the part of the Hamiltonian restricted to the

FIG. 2. (a) Coupling scheme in the cavity. The cavity G, laser
�, and laser �0 Rabi frequencies are featured by thick, thin, and
dashed arrows, respectively. (b) Equivalent scheme where the
states jg0i; 0i (jei; 0i), i � 1, N � 1, of frame (a) form the
collective unmarked ground state jg0u; 0i (excited state jeu; 0i).
The effective cavity Rabi frequency to the collective unmarked
excited state is

�������������
N � 1
p

G.
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subspace spanned by the states jg0u; 0i; jg0N; 0i; jg; 1i;
jeu; 0i; jeN; 0i is decoupled from the rest and reads

 H1 �
0 V‘
Vy‘ Vc

� �
; (5)

with
 

V‘ �
0 � 0

0 0 �0

 !
;

Vc �

0
�������������
N � 1
p

G G�������������
N � 1
p

G 0 0

G 0 0

0
BB@

1
CCA;

and � � �� e�i�t�0, �0 � �0 � ei�t�. This Hamilton-
ian, whose derivation is exact, is represented in Fig. 2(b).

By means of a unitary transformation U, we diagonalize
the block Vc, which admits the eigenvalues �0 � 0 and
�� � �

����
N
p

G, whose associated eigenvectors read
 

j�0i �

�������������
1�

1

N

s
jeN; 0i �

1����
N
p jeu; 0i

j��i �
1���
2
p

�
1����
N
p jeN; 0i �

�������������
1�

1

N

s
jeu; 0i � jg; 1i

�
:

(6)

Notice that for large N, j�0i is essentially the collec-
tive state jeN; 0i with the marked atom in the excited state
jei and all the others in the ground state jg0i, whereas
j��i are mainly balanced superpositions of jeu; 0i and
jg; 1i. The new Hamiltonian reads, in the basis
jg0u; 0i; jg0N; 0i; j�0i; j��i; j��i,

 UyH1U �
A B
By C

� �
; (7)

with

 A �
1����
N
p

0 0 ��
0 0

�������������
N � 1
p

�0

��

�������������
N � 1
p

�0
 0

0
@

1
A

B �
1�������
2N
p

�������������
N � 1
p

�
�������������
N � 1
p

�
�0 �0

0 0

0
B@

1
CA

C �
����
N
p G 0

0 �G

� �
:

(8)

The time evolution of the nonresonant components in �
and �0 is much faster than the evolution of � and �0,
which occurs over a time scale T � ��1. Hence it is
justified to replace these contributions with their vanishing
average values over times ��1 � �� T : �� ’ � and
��0 ’ �0, where �f�t� � 1

�

R
t��
t duf�u�. This is the resonant

approximation. Similarly, the unitary evolution of C is
much faster than that of A if �peak=NG� 1, since the
respective eigenvalues scale as

����
N
p

G and �peak=
����
N
p

,
where �peak is the peak amplitude of the pulse �. Upon
performing an adiabatic elimination we thus obtain an
effective Hamiltonian Heff � �A� �BC�1 �By that contains

all the contributions up to order ��peak=NG�
4. As the

columns of B are identical and C is traceless, there is no
correction of second order: Heff � �A.

Our aim is to transfer adiabatically the population from
the initial state jg0; 0i, which gives no privileged role to any
of the N states jg0j; 0i, to a final state that coincides with the
marked state jg0N; 0i in a time that scales as

����
N
p

. The
population transfer mechanism is most easily revealed in
the basis of the instantaneous eigenstates of Heff�t�:
 

j0i�t� � cos��t�jg0N; 0i � sin��t�jg0u; 0i

j�i�t� �
1���
2
p �sin��t�jg0N; 0i � cos��t�jg0u; 0i � j�0i�;

(9)

pertaining to the eigenvalues 0 and ���t�, where

 ��t� �
1����
N
p

�����������������������������������������������
�N � 1��02�t� ��2�t�

q
: (10)

Note that j0i has no component on the collective excited
states jeN; 0i or jeu; 0i and is therefore a so-called dark
state, which is immune to loss by spontaneous emission (in
contrast to the states j�i). The instantaneous angle ��t� is
defined through the relation

 tan��t� � �
�������������
N � 1
p �0�t�

��t�
: (11)

Requiring the instantaneous eigenstate j0i to coincide at

the initial time with the uniform superposition jg0; 0i �

1���
N
p jg0N; 0i �

������������
1� 1

N

q
jg0u; 0i and at the final time with the

marked state jg0N; 0i entails that

 tan��ti� � �
�������������
N � 1
p

; tan��tf� � 0: (12)

This implies that the two pulses must be switched on
simultaneously, �0�ti� � ��ti�, and that the pulse �0 is
to be turned off before �. In the adiabatic representation
(9), the effective Hamiltonian reads

 Had
eff �

� i��
2
p _� 0

� i��
2
p _� 0 � i��

2
p _�

0 i��
2
p _� ��

0
BB@

1
CCA; (13)

where _� � 1
1�tan2�

d
dt tan�. In the adiabatic regime, the

transitions between instantaneous eigenstates are negli-
gible. This will be achieved if the Hamiltonian varies
sufficiently slowly in time so as to keep _�� �. On the
other hand, we wish to control the process duration and, in
particular, to prevent it from becoming arbitrarily large.
For that purpose, as proposed in [13], we choose to require
_� and � to be in a constant (small) ratio " at all times,

independent of N:

 

_� � "�: (14)

Given a laser pulse �, this will allow us to determine the
pulse �0 that is needed to remain in the instantaneous
eigenstate j0i�t� with a probability around 1� "2 through-
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out the process, starting from the uniform superposition
and ending up in the marked state. Indeed, rewriting (10)
with (11) as � � 1���

N
p

��������������������
1� tan2�
p

�, we obtain from (14) a

differential equation for tan�, i. e., for the ratio �0=�. Its
solution satisfying the initial condition (12) reads

 

�0�t�
��t�

�
1� "A�t���������

N�1
p������������������������������������������������������������������

1� "A�t�f2
�������������
N � 1
p

� "A�t�g
q ; (15)

where A�t� �
R
t
ti
du��u�. Expressing the total area A of

the pulse � as the product of its peak amplitude �peak and
a characteristic duration T , we arrive at

 �avT �

�������������
N � 1
p

"
: (16)

This shows that, for a peak amplitude independent of N,
the duration scales as

����
N
p

. Note that we can equivalently
increase the peak amplitude as

����
N
p

for a constant duration.
Figure 3 displays the pulses and the population dynam-

ics resulting from (15) with N � 8, " � 0:05, and a
Gaussian pulse � of characteristic duration T ��

����
�
p

T�.
As predicted, the transfer to the marked state is very
efficient. Notice also that the transient population in the
excited states is very low. These results stem from the
fact that the dynamics remains in the instantaneous
decoherence-free eigenstate j0i�t� in the adiabatic limit.

An experimental implementation of the robust processes
proposed here requires to trap atoms in a cavity, for in-

stance using a standing-wave dipole-force trap [17]. As a
realistic � atomic scheme, we can consider the typical
2 3S1–2 3P0 transition in metastable helium which is of
linewidth �� 107 s�1 and Rabi frequency ��
108

���
I
p

s�1 (with the intensity I in W=cm2). To neglect
spontaneous emission, as assumed in (2), we require the
condition ��peakT�2 � �T. It is fulfilled when �peakT �
1 and �peak � �, which are satisfied in practice, e.g., for
Ipeak � 104 W=cm2 and T � 10 ns. The feasibility of fix-
ing the ratio of two pulses (here essentially required at
early times) has been shown in [18] using acousto-optical
modulation of a cw laser in such a nanosecond regime.
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FIG. 3. Dynamics of the effective Hamiltonian for N � 8, " �
0:05 and a Rabi frequency with a Gaussian profile ��t� �
�peake��t=T�

2
, with �peakT �

�������������
N � 1
p

=�"
����
�
p
�. �0�t� is deter-

mined from (15). Upper panel: Rabi frequencies ��t� and
�0�t�. Lower panel: Populations Pu�t� � jhg0u; 0j�i�t�j2 of the
collective unmarked state, PN�t� � jhg0N; 0j�i�t�j

2 of the marked
state, and P0�t� � jh�0; 0j�i�t�j

2 of the superposition of excited
states, where j�i�t� is the dynamical state vector.

PRL 99, 170503 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
26 OCTOBER 2007

170503-4


