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We investigate the entanglement properties of resonating-valence-bond states on two and higher
dimensional lattices, which play a significant role in our understanding of various many-body systems.
We show that these states are genuinely multipartite entangled, while there is only a negligible amount of
two-site entanglement. We comment on possible physical implications of our findings.
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Introduction.—In quantum many-body physics,
resonating-valence-bond (RVB) states have received a lot
of attention due to its importance in the description of
different phenomena. They are used to describe the reso-
nance of covalent bonds in organic molecules, behavior of
Mott insulators without long-range antiferromagnetic or-
der [1], d- and s-wave superconducting states [2], super-
conductivity in organic solids [3], and the recently
discovered insulator-superconductor transition in boron-
doped diamond [4]. There are many other applications of
RVB states (see, e.g., [5]). Moreover, RVB states have been
suggested as a basis for fault-tolerant topological quantum
computation [6]. We believe that successful applications of
RVB states partially rest on the interesting entanglement
properties that they have, and this particular aspect has not
received much attention in the literature.

Various tools of quantum information (QI) have been
successfully employed to understand many-body systems
[7]. In particular, entanglement has been found to be an
indicator of quantum phase transitions [8]. Moreover, con-
densed matter systems can be efficiently simulated using
techniques related to entanglement [9]. The usefulness of
entanglement in condensed matter physics leads us to
consider it in the context of the RVB states.

The main thesis and results.—The main thesis of this
Letter is that the RVB states have a very particular structure
from the point of view of the distribution of entanglement.
More specifically, entanglement stretches over the signifi-
cant fraction of the lattice, while there is virtually no
entanglement when we restrict ourselves to small regions
of the lattice. This fact may play a significant role in the
physics of the RVB states.

We show that the most general RVB-type states on the
two- (or more) dimensional lattice do not contain a signifi-
cant amount of bipartite entanglement (BE) between any
two sites of the lattice. However, genuine multipartite
entanglement is present when we consider the whole lat-
tice. We exemplify our results by considering two extreme
cases: the so-called RVB gas and RVB liquid.

Among the QI concepts that we use to prove these
results, are ‘‘monogamy of entanglement’’ [10], which

places restrictions on BE in a multipartite scenario, and
‘‘quantum telecloning’’ [11], a phenomenon that uses mul-
tiparty entanglement to produce approximate copies
(clones) of a given state at separated locations. Surpris-
ingly, it turns out that one can obtain more precise estima-
tions of entanglement by using quantum telecloning, rather
than by monogamy.

Derivations and discussions.—Let us begin with a brief
formal definition of entangled and separable states. A pure
state of two parties is said to be entangled (separable) if it
cannot (can) be expressed as a tensor product of two pure
states at the two parties. An entangled (separable) mixed
state of two parties is one which cannot (can) be expressed
as a probabilistic mixture of separable pure states. Last, a
pure state of an arbitrary number of parties is said to be
genuinely multiparty entangled, if it is not separable in any
bipartite splitting. We will not have occasion to consider
further general scenarios.

For definiteness, we will state and derive our results for
any two-dimensional (2D) lattice (including infinite ones).
However, it will be apparent that most of our considera-
tions can be carried over to higher dimensions. Each lattice
site is occupied by a qubit (a two-dimensional quantum
system, e.g., a spin-1=2 particle).

Consider a 2D lattice that is a union of two sublattices, A
and B, where any site from sublattice A (B) does not have
any sites from the same sublattice as its nearest neighbors
(NNs). An RVB state on such a lattice is [12]

 j i �
X
h�i1; . . . ; iN; j1; . . . ; jN�j�i1; j1� . . . �iN; jN�i;

where the sum runs over i� 2 A, and j� 2 B, N is the
number of sites in each sublattice, and j�ik; jk�i denotes the
singlet (dimer), 1��

2
p �j 1

2iik j�
1
2ijk � j�

1
2iik j

1
2ijk�, connecting

a site in A with a site in B. The function h is only assumed
to be isotropic over the lattice. (The original definition,
e.g., in Ref. [12], is far more restrictive, in that h is
assumed to be positive, factorizable, and only a function
of the distance between the sites.) Every element in the
superposition in j i is said to be a covering of the lattice
under consideration. Such an RVB state can be defined on
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any lattice and in any dimension. It is useful to consider
two extreme examples: RVB gas and RVB liquid. The gas
is the RVB state where the function h is a constant (so that
the state is made up from coverings of equal strength),
whereas for the liquid, we consider those coverings that
contain only NN dimers.

Let us first start with an observation on the rotational
properties of the reduced density matrices of j i. We
notice that any n-body density matrix �k1;...;kn describing
n arbitrary sites k1; . . . ; kn is invariant under the action of
U�n, where U is a general unitary acting on the qubit
Hilbert space. The proof for n � 2 (easily extendible to
an arbitrary n) reads

 �ij �
X

ij

jhijj ij2 �
X

ij

jhijjU�2Nj ij2

� U�i�U�j�
X

ij

jhijj ij2�U�i�U�j��y:

Here ��k� denotes the operator � at the site k, the summa-
tion excludes the ith and jth sites, and hijj i is the partial
scalar product. The rotational invariance implies, in par-
ticular, that any single-site density matrix is in a com-
pletely depolarized state, and any two-body density
matrix is a ‘‘Werner state’’ [13] �W�p� � pj�i; j�ih�i; j�j �
�1� p�I4=4, with � 1

3 � p � 1 and I4 is an identity op-
erator for two spins.

Let us now investigate the entanglement properties of
the state j i. We begin by analyzing the entanglement
properties of any two-site density matrix. The first tool
we are going to use is the so-called monogamy of entan-
glement [10]. In short, monogamy places restrictions on
the amount of entanglement that a certain quantum system
can have with another, given that the former is already
entangled with a third system. For instance, if two systems
are maximally entangled, this entirely excludes entangle-
ment between any of them and some other system.
However, if the two systems are not maximally entangled,
this does not exclude entanglement with the third one.

It is possible to quantify the notion of monogamy in
terms of the ‘‘tangle’’ [14]. We will only have occasion to
consider states of a qubit and a d-dimensional quantum
system (qudit). The tangle for a pure state j�iAB of a qubit
(A) and a qudit (B) is a measure of quantum correlation
(entanglement), and is defined as ��j�i� � SL�trB�j i�
h j��, where the linearized entropy SL�%� � 2	1� tr�%2�
.
For a mixed state �AB, the tangle is defined by the convex
roof construction: ����� infpx;j�xi

P
xpx��j�xi�, where the

infimum is over all probabilistic pure-state decomposi-
tions,

P
xpxj�xih�xj, of �. For a state � of two qubits,

the tangle is given by the square of max�0; �1 � �2 � �3 �
�4�, where �i are the square roots of the eigenvalues, in
decreasing order, of �~�, with ~� � �y � �y�

��y � �y, the
complex conjugation being performed in the �z � �z ba-
sis. In this Letter, ~� � ��x; �y; �z�, where �� are the Pauli
matrices.

The monogamy of entanglement for a state �n of n
qubits 1; 2; . . . ; n can be quantified by the inequalityPn
k�2 ���1k� � ���1:�2...n��, where ���1k� denotes the tangle

between qubits 1 and k, and ���1:�2...n��, the tangle between
qubit 1 and the aggregate of all the other qubits 2; 3; . . . ; n
treated as a single (2n�1-dimensional) quantum system
[10]. In general, � can vary between 0 and 1, but monog-
amy constrains the entanglement (�) that the particle 1 can
have with each of 2; 3; . . . ; n.

We now use the monogamy constraint to estimate two-
site entanglement in an RVB state. For definiteness, let us
consider a 2D square lattice, and let us choose an arbitrary
site A on the lattice. To focus attention, we assume that A
belongs to the sublattice A. The site A has four NNs, say
B1, B2, B3, and B4, belonging to the sublattice B. As noted
before, each pair (A, Bk), is in a Werner state, with the
same p, the last fact being due to the assumption of the
isotropic nature of the RVB state over the lattice. If the pair
(A, Bk) is entangled, i.e., p > 1

3 [15], its tangle reads
���ABk� � �3p� 1�2=4. The tangle ���A:�B1B2B3B4�

�, be-
tween the site A, and its NNs (treated as a single
24-dimensional system) cannot be greater than one. There-
fore, monogamy of entanglement gives us our first upper
bound on p, for any pair of NNs: p � 2

3 . Of course, this
upper bound does not tell us if there really is any entangle-
ment between the NNs. However, we know that this is a
weak bound because of the imprecise estimation of the
tangle ���A:�B1B2B3B4�

�. As we show later, this bound can
be improved by using some additional techniques from QI
theory.

The above reasoning can be applied to pairs of sites that
are far away from each other, resulting, in general, in
stronger bounds. E.g., if there are R sites at the distance
r from the site A, the monogamy inequality gives us p �
1
3�

2
3
���
R
p , where now p refers to the Werner state between

the site A, and any site at the distance r from A. The
number of equidistant points increases proportionally to r,
suppressing any possible entanglement between such sites.
Similar techniques can be used for other lattice geometries
and other dimensions.

We now demonstrate that a different approach, based on
the phenomenon of (approximate) quantum telecloning
[11], gives more stringent bounds on the amount of entan-
glement shared between pairs of sites. Briefly, the tele-
cloning phenomenon composes two concepts of QI:
‘‘quantum teleportation’’ [16], which transfers a quantum
state from one location to another by using shared entan-
glement and a small amount of classical communication,
and ‘‘quantum cloning’’ [17], which deals with the pro-
duction of approximate copies of a given unknown quan-
tum state. In telecloning, the approximate copies of the
given unknown state are produced at separated locations,
by using a shared multipartite entangled state, along with
classical communication.

To use the telecloning results for our purpose, we again
consider a site A surrounded by four equidistant NNs B1,
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B2, B3, B4. By attaching an auxiliary qubit to the qubit at
site A, performing the Bell measurement (measurement
projecting onto the singlet and the triplets) on this joint
two-qubit system, and broadcasting the resulting two bits
of classical information, we can quantum teleport [16] an
arbitrary state of the auxiliary qubit to the neighbors Bk,
with a certain (nonunit) fidelity, where the fidelity of a pro-
cess with input j�i and output %� is defined asR
h�j%�j�id�, with d� being the unitarily invariant mea-

sure on the input space. This is exactly what is achieved in
quantum telecloning, although the shared state that was
used for the purpose was different from ours [11]. Because
of isotropy of j i, the fidelity of teleportation, Ftele, to the
four sites is the same, and is Ftele �

p�1
2 [18]. This fidelity

cannot exceed the fidelity of the optimal symmetric clon-
ing, Fclone, producing four copies of the initial state. The
optimal quantum cloning machine that produces M copies
from a single copy of the input qubit leads to the fidelity
Fclone �

2M�1
3M [17]. Therefore an upper bound of p, for

NNs, can be obtained from the inequality Ftele � Fclone and
it reads p � 1

2 . This bound is much better than the one
obtained from the monogamy argument. Now p � 1

2 im-
plies a very low entanglement of formation (�0:023 ebits)
[14]. The entanglement of formation [19] of a two-party
pure state is the asymptotic ratio of the number of singlets
(ebits) that is required to prepare the state by local quantum
operations and classical communication. The generaliza-
tion to mixed states is again done via the convex roof
construction, discussed before. We therefore have a strong
indication that there is virtually no bipartite entanglement
between any two sites on the lattice.

As in the case of the monogamy, one gets tighter bounds
for the entanglement between A and the equidistant qubits
at distance r, because, in general, more clones are formed
with increasing r. Using Ftele � Fclone, we obtain p � 1

3�
2

3R . This is a square-root improvement (over the bound
obtained from monogamy) in the convergence to the sepa-
rability point p � 1=3.

Note that telecloning is viewed here as a monogamy of
the amount of QI that can be sent (teleported) in a distrib-
uted network, while the original monogamy of entangle-
ment [10] was a constraint on the shared entanglement in a
network. To understand this, we remember that shared
entanglement is a resource for sending QI [16]. What is
curious is that telecloning seems to point towards a more
stringent monogamy, than the ones already known, even
though its original purpose was not at all related to sharing
of entanglement.

Let us now consider the two special cases mentioned
before: the RVB gas and the RVB liquid. For the RVB gas,
since any pair of sites from different sublattices has the
same p, monogamy of entanglement gives us the strong
bound p � 1

3�
2
��
2
p

3
���
N
p , whereN is the number of sites in each

sublattice. The bound obtained from the telecloning argu-
ment is tighter: p � 1

3�
2

3N . Both bounds predict separa-
bility in the case of an infinite lattice. Interestingly, direct

computation for RVB gases of size 6 and 8 saturates the
telecloning bounds.

The situation is much more complicated in the case of
the RVB liquid. By the techniques used here, one cannot
obtain any tighter bounds than the ones already presented.
However, one can get some additional information on the
structure of the BE between the sites using the standard
techniques from condensed matter physics, which we now
briefly describe. The behavior of the correlation function
h j ~Si  ~Sjj i (where ~S � 1

2 ~�) between two sites i and j, is
an important quantity in condensed matter physics.
Ref. [20] shows that the two-point CF can be computed
by using the so-called loop coverings. A brief explanation
of the method is as follows. The state j i in the case of the
RVB liquid can be written simply as j i �

P
kjcki, where

jcki represents a certain configurations of dimers between
NNs. To compute the two-point CF, one needs to know
hckj ~Si  ~Sjjcli, for an arbitrary k and l. Each pair of the kets,
fjcki; jclig, can be graphically represented as lines (bonds)
between pairs of sites on the lattice. These bonds can form
two kinds of nonoverlapping loops: degenerate and non-
degenerate. Degenerate loops encircle two neighboring
sites, and nondegenerate ones join more than two sites
such that each site belongs to only one loop. The evaluation
of the expression hckj ~Si  ~Sjjcli is very simple: it is zero if i
and j belong to two different loops, and it is proportional to
� 3

4 if i and j belong to the same loop. We must take the
plus sign if i and j belong to different sublattices, and
minus sign otherwise. Using the above concepts, one ar-
rives at the formula h j ~Si  ~Sjj i� ��1�ji�jj 34 �P

g
X�i;j�4n�g�2d�g�P
g
4n�g�2d�g�

, where the summation is over all graphs

created by the dimer coverings, and ��1�ji�jj equals to
�1 if i and j belong to different sublattices, and to �1
otherwise. The function X�i; j� is 1 if i and j belong to a
loop, and is zero otherwise. The importance of the above
equation, for this Letter, stems from the fact that h j ~Si 
~Sjj i is exactly equal to the parameter p in the Werner
state describing the reduced density matrix of the sites i
and j. Therefore, for sites from the same sublattice, p is
either strictly negative or zero (zero only if the denomina-
tor grows faster than the numerator), which excludes en-
tanglement between such sites.

By using the above method, we have found that for the
RVB liquid, any two NN sites in the interior of a square
4� 4 lattice, p � 0:2004, which interestingly corresponds
to a separable state. Based on this fact, it is reasonable to
assume that this separability is not affected by increasing
the lattice size, confirming our thesis of having no two-site
entanglement in an RVB. Higher levels entanglement of
course exists, as we will show below.

Note here that the concept of quantum telecloning gives
upper bounds on the long-range behavior of the two-point
CFs for an arbitrary RVB state on a lattice (even three-
dimensional ones). To our knowledge, this is the first
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instance when such a connection is observed. This is an
example where techniques from QI can be applied to deal
with phenomena that are interesting in condensed matter
physics.

Let us now consider the multipartite entanglement prop-
erties of an arbitrary RVB state j i. We begin by observing
that any odd number of sites, of an arbitrary RVB state, is
entangled to the rest of the lattice. To prove this, it is
enough to show that any such arbitrary odd number of
qubits is in a mixed state. (Note that the whole state is
pure.) This, however, follows from the rotational invari-
ance of the density matrix that describes the odd number of
qubits, as there is no pure state of an odd number of qubits
that is rotationally invariant. Therefore, any set of an odd
number of qubits is entangled to the rest of the lattice. In
particular, any single qubit is maximally entangled with the
rest of the lattice.

To show that a certain RVB state has genuine 2N-party
multiparty entanglement, we are left with showing that any
set of an even number of sites is entangled to the rest of the
lattice. First, consider the RVB state in a bipartite splitting
between any two sites of the lattice and the remaining part
of it. As we have seen before, such a state is in a Werner
state, with p � 1=2. In particular, the state is not pure.
Therefore, any two sites of the lattice are entangled to the
rest of the lattice.

Consider now any even subset of the lattice consisting of
the sites e1; . . . ; en (n is even). Suppose that this subset is
not entangled to the rest of the lattice, i.e., the state j i can
be written as j i � j e1...enij�ei. As the function h defin-
ing j i is isotropic, there exists a subset f1; . . . ; fn having
one common site with the subset e1; . . . ; en, say e1 � f1,
such that j i � j e1f2...fnij�fi. However, this means that
the qubit at the site e1 must be disentangled from the rest of
the lattice, which is not possible because every qubit on the
lattice is maximally entangled to the rest of the lattice as
shown before. In this proof, we have assumed that either
the lattice is infinite, or that it has periodic boundary
conditions. It is worthwhile to note that numerical simula-
tions in Ref. [12] indicate that any two-site state is a
Werner state with nonzero p, in the case of RVB states
with factorizable, nonnegative h, depending only on the
distance between the lattice sites connected by the dimers
in the corresponding covering.

Conclusions.—We have shown that isotropic
resonating-valence-bond states in any two or higher di-
mensional lattice have only an insignificant amount of two-
site entanglement, while having genuine multiparty entan-
glement. To understand this, it is tempting to point to the
large number of intersite connections in the terms that
build up the RVB state, which, intuitively, would result
in genuine multiparty entanglement, while precluding any
two-site entanglement due to the monogamous nature of
entanglement. However, one should be cautious, as coun-
terexamples exist (e.g., [21]). Traditionally, properties of

many-body systems are mostly quantified using bipartite
measures such as two-point correlation functions, concur-
rence, and block entropy, to name a few. The present work
shows that the RVB structure is far richer, and may there-
fore require more elaborate ways of quantifying its prop-
erties. On the quantum computational side, this intricate
structure may allow for different ways of information
processing, such as coherent broadcasting of qubits [11].
Finally, our results also apply to the ground state of a three-
dimensional antiferromagnetic Heisenberg model with
nearest neighbor interactions and a possible next-nearest
neighbor ferromagnetic term [22].
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