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Quantum canonical transformations have attracted interest since the beginning of quantum theory.
Based on their classical analogues, one would expect them to provide a powerful quantum tool. However,
the difficulty of solving a nonlinear operator partial differential equation such as the quantum Hamilton-
Jacobi equation (QHJE) has hindered progress along this otherwise promising avenue. We overcome this
difficulty. We show that solutions to the QHJE can be constructed by a simple prescription starting from
the propagator of the associated Schrödinger equation. Our result opens the possibility of practical use of
quantum Hamilton-Jacobi theory. As an application, we develop a surprising relation between operator
ordering and the density of paths around a semiclassical trajectory.
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Canonical transformations play a central role in classical
mechanics [1]. From the earliest days of quantum mechan-
ics, the importance of quantum canonical transformations
(QCT’s) has been recognized [2] and their properties have
been systematically investigated by Jordan [3], London [4],
Dirac [5], and Schwinger [6], among others. Schwinger’s
framework—based on the Quantum Action Principle
[7]—provides the most suitable context to define a QCT
as q̂! Q̂, p̂! P̂, H�q̂; p̂; t� ! K�Q̂; P̂; t�, where all ca-
nonical variables pertain to the same dynamical system S
with N degrees of freedom [8].

Owing to the formal similarities between classical and
quantum mechanics, QCT’s closely resemble their classi-
cal counterparts. In particular, one of four possible sets of
independent canonical variables (q̂, Q̂), (q̂, P̂), (Q̂, p̂), (p̂,
P̂) must be selected to represent a QCT explicitly, and we
denote by W�q̂; Q̂; t�, W�q̂; P̂; t�, etc., the associated opera-
tor generating functions. Choosing the set (q̂, Q̂), a QCT
can be written as (1 � i � N)

 p̂i �
@
@q̂i

W�q̂; Q̂; t�; (1)

 P̂i � �
@

@Q̂i

W�q̂; Q̂; t�; (2)

 K�Q̂; P̂; t� � H�q̂; p̂; t� �
@
@t
W�q̂; Q̂; t�: (3)

The presence of noncommuting operators in the gener-
ating function makes QCT’s different from their classical
counterparts and is ultimately responsible for the differ-
ence between classical and quantum mechanics [9]. As
emphasized by Jordan and Dirac, the resulting operator-
order ambiguity should be fixed by enforcing well order-
ing: operators represented by capital letters should be to the

right of those labeled by lowercase letters. This means that
W�q̂; Q̂; t� should have the structure

 W�q̂; Q̂; t� �
X
�

f��q̂; t�g��Q̂; t�; (4)

for suitable functions f���� and g����. Throughout, we will
suppose that operator generating functions are well or-
dered. Note that with well ordering a quantum generating
function like W�q̂; Q̂; t� is uniquely defined by the replace-
ments q! q̂, Q! Q̂ in a given c-number function
W�q;Q; t� [10].

As in classical mechanics, the quantum time evolution is
described by a canonical transformation bringing the ca-
nonical variables in the Heisenberg picture q̂�t�, p̂�t� to
constant values at some initial time t0. In addition, q̂�t�,
p̂�t� can be derived from Eqs. (1) and (2), provided that the
transformed Hamiltonian vanishes. As a consequence, the
operator generating function W�q̂; Q̂; t� obeys the operator
quantum Hamilton-Jacobi equation (QHJE)

 H
�

q̂;
@
@q̂
W�q̂; Q̂; t�; t

�

�
@
@t
W�q̂; Q̂; t� � 0: (5)

W�q̂; Q̂; t� should be a complete solution of Eq. (5); i.e., it
should depend on N independent ‘‘integration constants’’
Q̂i. As in classical mechanics, the operator Hamilton-
Jacobi equation, Eq. (5), provides an independent formu-
lation of the theory. Yet the formidable difficulty of finding
solutions to this nonlinear operator partial differential
equation has hindered progress along this otherwise prom-
ising avenue.

Our aim is to show that this stumbling block can be
sidestepped, thereby opening the way to exploiting the
operator QHJE as a calculational tool. As we will demon-
strate, the solutions to the operator QHJE arise by a simple
prescription from the solutions of the Schrödinger equation
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for the same Hamiltonian. In particular, the operator gen-
erating function W�q̂; Q̂; t� arises from the quantum propa-
gator. Implications of our result will be discussed after we
have completed its demonstration.

We are concerned throughout with the general Weyl-
ordered Hamiltonian [11]

 H�q̂; p̂; t� � 1
2aij�q̂�p̂ip̂j � p̂iaij�q̂�p̂j �

1
2p̂ip̂jaij�q̂�

� bi�q̂�p̂i � p̂ibi�q̂� � c�q̂�; (6)

where aij���, bi���, and c��� are functions of q̂k, and sum-
mation over repeated Latin indices for the degrees of free-
dom of S is understood. Employing the shorthand
Ŵ � W�q̂; Q̂; t�, Eq. (5) reads
 

1

2
aij�q̂�

@Ŵ
@q̂i

@Ŵ
@q̂j
�
@Ŵ
@q̂i

aij�q̂�
@Ŵ
@q̂j
�

1

2

@Ŵ
@q̂i

@Ŵ
@q̂j

aij�q̂�

� bi�q̂�
@Ŵ
@q̂i
�
@Ŵ
@q̂i

bi�q̂� � c�q̂� �
@Ŵ
@t
� 0: (7)

Since we are looking for the relationship between the
operator QHJE and the Schrödinger equation, we turn
Eq. (7) into a c-number partial differential equation.
Hence we sandwich Eq. (7) between hqj and jQi, finding
 

1

2
aij�q�hqj

@Ŵ
@q̂i

@Ŵ
@q̂j
jQi � hqj

@Ŵ
@q̂i

aij�q̂�
@Ŵ
@q̂j
jQi

�
1

2
hqj

@Ŵ
@q̂i

@Ŵ
@q̂j

aij�q̂�jQi � bi�q�hqj
@Ŵ
@q̂i
jQi

� hqj
@Ŵ
@q̂i

bi�q̂�jQi � c�q�hqjQi � hqj
@Ŵ
@t
jQi � 0: (8)

To evaluate the matrix elements in Eq. (8), we make
repeated use of the canonical commutation relations. In
this connection, we recall that for an arbitrary functionG���

 	G�q̂�; p̂i
 � i@
@G�q̂�
@q̂i

: (9)

By inserting Eq. (1) into (9), we obtain

 

@Ŵ
@q̂i

G�q̂� � G�q̂�
@Ŵ
@q̂i
� i@

@G�q̂�
@q̂i

: (10)

We begin by taking G�q̂� � bi�q̂�, G�q̂� � aij�q̂�, and
G�q̂� � @aij�q̂�=@q̂j. Accordingly, Eq. (10) allows us to
rewrite Eq. (8) as
 

2aij�q�hqj
@Ŵ
@q̂i

@Ŵ
@q̂j
jQi � 2

�
bi�q� � i@

@aij�q�

@qj

�
hqj

@Ŵ
@q̂i
jQi

�

�
c�q� � i@

@bi�q�
@qi

�
@

2

2

@2aij�q�

@qi@qj

�
hqjQi

� hqj
@Ŵ
@t
jQi � 0: (11)

At this point, we denote by W�q;Q; t� the c-number func-
tion that uniquely produces W�q̂; Q̂; t� by the substitution
q! q̂, Q! Q̂. Explicit use of Eq. (4) yields

 hqjŴjQi � W�q;Q; t�hqjQi; (12)

 hqj
@Ŵ
@t
jQi �

@W�q;Q; t�
@t

hqjQi; (13)

 hqj
@Ŵ
@q̂i
jQi �

@W�q;Q; t�
@qi

hqjQi; (14)

and furthermore

 hqj
@Ŵ
@q̂i

@Ŵ
@q̂j
jQi �

X
�;�

hqj
@f��q̂; t�
@q̂i

g��Q̂; t�

�
@f��q̂; t�

@q̂j
g��Q̂; t�jQi: (15)

What remains to be done is to disentangle Eq. (15). To this
end, we first take G�q̂� � @f��q̂; t�=@q̂j in Eq. (10) to get

 

X
�

@f��q̂; t�
@q̂i

g��Q̂; t�
@f��q̂; t�

@q̂j
�
@f��q̂; t�

@q̂j

X
�

@f��q̂; t�
@q̂i

g��Q̂; t� � i@
@2f��q̂; t�

@q̂i@q̂j
: (16)

We next multiply Eq. (16) by g��Q̂; t� on the right and sum over �, thereby obtaining

 

X
�;�

@f��q̂; t�
@q̂i

g��Q̂; t�
@f��q̂; t�

@q̂j
g��Q̂; t� �

X
�;�

@f��q̂; t�

@q̂j

@f��q̂; t�
@q̂i

g��Q̂; t�g��Q̂; t� � i@
X
�

@2f��q̂; t�

@q̂i@q̂j
g��Q̂; t�; (17)

which allows us to rewrite Eq. (15) as

 hqj
@Ŵ
@q̂i

@Ŵ
@q̂j
jQi �

�
@W�q;Q; t�

@qi

@W�q;Q; t�
@qj

� i@
@2W�q;Q; t�
@qi@qj

�
hqjQi: (18)

As a consequence, Eq. (11) takes the form
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2aij�q�
�
@W�q;Q; t�

@qi

@W�q;Q; t�
@qj

� i@
@2W�q;Q; t�
@qi@qj

�

� 2
�
bi�q� � i@

@aij�q�

@qj

�
@W�q;Q; t�

@qi
� c�q� � i@

@bi�q�
@qi

�
@

2

2

@2aij�q�

@qi@qj
�
@W�q;Q; t�

@t
� 0: (19)

This derivation makes it natural to regard Eq. (19) as the
c-number QHJE associated with the operator QHJE (5) for
S described by the quantum Hamiltonian (6).

The physical significance of Eq. (19) becomes clear by
setting

  �q;Q; t� � expf�i=@�W�q;Q; t�g: (20)

A straightforward (if tedious) calculation shows that
 �q;Q; t� obeys precisely the Schrödinger equation asso-
ciated with the quantum Hamiltonian (6) in the variables q,
t [12]. Hence—thanks to Eqs. (12) and (20)—starting
from a solution W�q̂; Q̂; t� we get a solution  �q;Q; t� of
the corresponding Schrödinger equation depending on N
independent constants Qi. We stress that this result holds
true even for solutions W�q̂; t� of the operator QHJE that
are independent of Q̂, since all equations from (7) onward
could have been multiplied by

R
dQ��Q�, with ��Q�

arbitrary. What is more important for us, the argument
can be turned around, because W�q̂; Q̂; t� can be uniquely
obtained from W�q;Q; t� by enforcing well ordering.
Therefore, from a solution  �q;Q; t� of the Schrödinger
equation depending on N independent constants Qi we get
W�q̂; Q̂; t�, and from any particular solution  �q; t� we can
construct a particular solution W�q̂; t�.

So far, we have focused on showing that W�q;Q; t�
satisfies a certain differential equation. As we demonstrate
below, by use of appropriate boundary conditions we get
more specific information. Namely, the solution of
Schrödinger’s equation that results from the operator gen-
erating function W�q̂; Q̂; t� is precisely the quantum propa-
gator K�q;Q; t� [13]. Since any solution of the Schrödinger
equation arises by convolving an arbitrary wave function
with the propagator, we conclude that any solution of the
operator QHJE can ultimately be constructed in terms of
the propagator.

This will allow solutions of and approximations to the
operator QHJE to be obtained, since a wealth of informa-
tion is available on the corresponding solutions to
Schrödinger’s equation. In particular, once an exact or
approximate Ŵ has been constructed, one can obtain the
time dependence of operators, using Eqs. (1) and (2).

We proceed to prove that  �q;Q; t� � K�q;Q; t�. Since
both quantities satisfy the same Schrödinger equation,
which is first order in time, all we need show is that they
have the same boundary conditions at t � 0. The propa-
gator, of course, is ��q�Q� at t � 0. To show that
 �q;Q; t� shares this property, we must look at the behav-
ior of Ŵ for t! 0. We expect Ŵ to generate the identity

transformation in the limit t! 0, but there is a slight
complication: as in classical mechanics [1], the identity
transformation using the (q̂, Q̂) variables does not have a
simple form.

A way out of this difficulty relies on the observation that
for a nonsingular potential the solution to the classical
Hamilton-Jacobi equation approaches that of the free par-
ticle for t! 0. Thus, for sufficiently small t the classical
generating function has the form F�q;Q� � m�Q�
q�2=2t. We use this to guess the limit of the operator Ŵ
for t! 0, and from that to obtain the corresponding limit
of the c-number function W�q;Q; t�. The first observation
is that as a candidate for the small-t limit of Ŵ, the well-
ordered operator form of F�q;Q� (which contains �2q̂ Q̂ )
does not work, which is to say, it does not satisfy Eq. (5).
To see this in detail—and to see the cure—we assume the
following small-t limiting form for Ŵ

 Ŵ �
m
2t
�Q̂2 � 2q̂ Q̂�q̂2� � g�t�: (21)

Substituting into Eq. (5), the squaring of Ŵ generates a
term ��q̂ Q̂�Q̂ q̂�, rather than �2q̂ Q̂ , so that satisfying
Eq. (5) requires

 0 �
m

2t2
	q̂; Q̂
 �

@g�t�
@t

: (22)

For small t, one can again neglect the influence of the
potential terms and the commutator can immediately be
deduced from the relation q̂ � Q̂� P̂t=m, the solution of
the free particle Heisenberg equations of motion.
Equation (22) now becomes @g=@t � i@=2t and we obtain

 Ŵ �
m
2t
�Q̂2 � 2q̂ Q̂�q̂2� �

i@
2

lnt; for t! 0; (23)

 

 �q;Q; t� � const�

���
1

t

s
exp

�
i
@

m
2t
�Q2 � 2qQ� q2�

�
;

for t! 0; (24)

with the constant in Eq. (24) arising from integrating
@g=@t � i@=2t. It is remarkable that, aside from the con-
stant (which is not fixed by Ŵ), the q̂ Q̂ -commutation
relation has given us precisely the correct time dependence
of the propagator. This completes our proof.

The c-number QHJE (19) has repeatedly attracted inter-
est. For instance, Eq. (19) has been derived from a diffeo-
morphic covariance principle based partly on an SL�2; C�
algebraic symmetry of a Legendre transform [14].
Alternatively, Eq. (19) has been taken as the starting point
of a classical-like strategy to define c-number quantum
action-angle variables in quantum mechanics [15]. We
also remark that a variant of Eq. (19) has been derived
within the phase-space path-integral approach to quantum
mechanics [16].

We next show the power of the relation we have just
developed between W�q;Q; t� and K�q;Q; t�, using, as
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suggested above, known information about the propagator.
Consider a situation where the semiclassical approxima-
tion is valid and there is but one classical path between the
initial and final points. Then in this approximation, as is

well known, K�q;Q; t� � const�
�����������������������������
det@2S=@q@Q

p
�

exp	iS�q;Q; t�=@
, with S�q;Q; t� Hamilton’s principal
function (a solution of the classical Hamilton-Jacobi equa-
tion). It then follows from our result that W�q̂; Q̂; t�jWO �

S�q̂; Q̂; t�jWO �
1
2 i@ log det@2Ŝ=@q@QjWO, where ‘‘WO’’

stands for ‘‘well ordered.’’ Now imagine that this expres-
sion is inserted in Eq. (5). If not for the well ordering, S
alone would solve the equation. Therefore, we conclude
that the effect of the well ordering is precisely to demand
the presence of the additional term, 1

2 i@ log det@2S=@q@Q
(where WO has been dropped because there is already an @

in the expression). But that additional term (famously) has
a meaning of its own: it goes back to van Vleck and
represents the density of paths along the classical path; it
plays an essential role, for example, in the Gutzwiller trace
formula. What our result says is that this density of paths
can be thought of as arising from the commutation opera-
tions necessary to bring S to well-ordered form. Thus the
purely quantum issue of commuting operators produces a
quantity that one would have thought is exclusively deriv-
able from classical mechanics.

We remark that this relation took us completely by
surprise. To check it, we worked the simplest nontrivial
example we could (our proof above comparing the bound-
ary conditions for K andW already showed it to be true for
the free-particle case). Let H � p2=2� V with V �
V0��a=2� jxj� and x in one dimension. To lowest order
in V the action is S�x; y; t� � �x� y�2=2t� V0at=�x� y�
for y <�a=2 and x > a=2. We checked our relation, with
x! q̂ and y! Q̂ and with well ordering implemented by
	1=�q̂� Q̂�
WO �

R
1
0 du exp��uq̂� exp�uQ̂�. Using the

Baker-Campbell-Hausdorff formula and other techniques
and keeping only lowest order in V and @, indeed the
relation checked out.

In conclusion, we have shown how to construct solu-
tions to the operator QHJE starting from the quantum
propagator K�q;Q; t� for the same Hamiltonian. Expli-
citly, once K�q;Q; t� is known, we get its ‘‘complex
phase’’ W�q;Q; t� via Eq. (20). Then, by demanding well
ordering, the replacement q! q̂, Q! Q̂ uniquely pro-
duces the operator W�q̂; Q̂; t�. Alternatively, by convolving
K�q;Q; t� with an arbitrary ��Q� we produce any solution
of the Schrödinger equation. Finally, by replacing q! q̂ in
its ‘‘complex phase’’ we get a solution W�q̂; t� of the
operator QHJE. While this is obviously true for exact
propagators, it also enables one to find approximate solu-

tions to the operator QHJE by exploiting approximate
propagators. In particular, we used the semiclassical ap-
proximation to the propagator to show that the commuta-
tion operations establishing well ordering provide just
what is needed to get the density of paths around the
classical path. This density of paths satisfies a continuity
equation which, as O’Raifeartaigh and Wipf [17] empha-
size, is in a sense of order @ (even though it involves
classical quantities only and has no @ in it). Although our
proof establishes this surprising relation, there remains the
provocative question of understanding its intuitive basis.
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